This document is the authors’ own version of work that has been presented at the 13th International Symposium on
Medical Information and Communication Technology (ISMICT). The publisher's version is available here:

doi:10.1109/ISMICT.2019.8743905

Adaptive Cybersecurity Framework for Healthcare
Internet of Things

Svetlana Boudko
Norwegian Computing Center
Oslo, Norway
svetlana.boudko @nr.no

Abstract—Connecting people, processes, devices and data, the
Internet of Things brings new security challenges and may
significantly increase the vulnerability of healthcare services. This
paper investigates advanced adaptive security to anticipate and
respond to dynamic and adaptive attacks on healthcare critical
infrastructures. We propose the Adaptive Cybersecurity Frame-
work that supports dynamic adaptation to cyber threats. Further,
we simulate and evaluate the framework using evolutionary game
theory, and outline the further steps for our future work.

Index Terms—adaptive security, evolutionary game, machine
learning, healthcare, Internet of Things, smart home

I. INTRODUCTION

The Internet of Things (IoT) connects people, processes,
devices and data. While it brings great benefits to the services
in the healthcare domain, healthcare IoT also significantly
increases the vulnerability of its infrastructure [1]-[3]. The
healthcare infrastructure is not limited to hospitals and general
practitioner offices, but can also include sensor networks
inside smart houses and wearable devices placed on patients.
This transforms healthcare services into highly distributed
heterogeneous environments, as depicted in Fig. 1.

Combining hospitals, healthcare institutions, as well as
smart homes and multiple healthcare wearable devices, health-
care services and infrastructures become more sophisticated,
distributed and interconnected than ever before. Therefore,
these services are vulnerable to a variety of emerging cyber-
physical attacks. Consequently, healthcare is placed among the
five top sectors that are exposed to major security risks in 2018
[4].

To protect their assets, IoT-enabled healthcare critical in-
frastructures need sophisticated cyber-defense systems. These
systems need to be flexible, adaptable, robust, able to detect
a wide variety of threats, and make intelligent real-time
decisions.

A dynamic cybersecurity framework for the protection of
complex healthcare ecosystems is required to tackle the chal-
lenges of achieving their security and resilience. Resilience,
efficiency, security and privacy are considerable issues and
present challenges especially when dealing with combined
physical and cyber threats to complex healthcare ecosys-
tems. Despite the significant efforts in securing important IoT
systems, many involuntarily remain vulnerable to advanced,
targeted cyber intrusion. Adaptive attackers will adapt their
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Fig. 1. Healthcare IoT Platform may include healthcare institutions, smart
homes, and wearable devices with smart phones serving as gateways.

strategies to the security situation, and to newly deployed
countermeasures. Therefore, the system must protect IoT data,
which requires significant evolution and adaptation in the
security of the IoT. The goal of this research is to gain new
knowledge that will significantly increase the efficiency and
effectiveness of adaptive security for the prevention of adaptive
attacks to IoT. This will be achieved through (1) modeling
and analysis of adaptive attack-defense evolutionary dynamics
using a combination of evolutionary game, reinforcement
learning, fuzzy logic, system dynamics, and formal semantic,
(2) development of quantitative metrics for the adaptive attack-
defense evolutionary models using mathematical computation,
and (3) performance simulation experiments and evaluation
using suitable simulation techniques, e.g. multi-agent tech-
nologies and system dynamics.

Previously, we have proposed an evolutionary game frame-
work [5] for modelling adaptive attacks and defenses related
to data integrity for advanced metering infrastructures. In this
paper, we (1) present main building components of a dynamic
cyber security framework for the healthcare IoT that theo-
retically relies upon evolutionary game theory and machine
learning, and (2) simulate and evaluate this framework using
modeling and analysis of adaptive attack-defense evolutionary
game.



II. RELATED WORK
A. Cybersecurity Theats in Critical Infrastructures

The study [1] investigates cyber threats in healthcare critical
infrastructures that is based on data collections from real
projects that span over a 15-year period. According to the
authors, the data is in line with EC Directive on Critical
Infrastructures. The authors used probabilistic quantitative
methods without any further specification. Their conclusion
is that eHealth systems are open for all types of cyber-attacks
including access control and authentication, data integrity and
data loss.

An overview of security challenges in IoT enabled cyber-
physical systems presents the guidelines for applications of
computational intelligence in IoT security [2]. Particularly, it
considers how evolutionary computation and other compu-
tational intelligence technology can be used to protect [oT
systems.

In [3], dependencies between different critical infrastruc-
tures are studied. The authors claim that these dependencies
are potential security risks. Due to the interconnections, a
failure in one infrastructure can cause cascading failures
among its dependencies. The paper uses a holistic, dynamic
and quantitative approach for identifying dependencies and
analyzing the effects.

In [6], the authors analyze protection measures for critical
infrastructures and conclude that certain intelligent mecha-
nisms are needed in addition to traditional security mecha-
nisms.

A framework for designing resilient distributed intrusion
detection systems for critical infrastructures is introduced in
[7]. The framework uses a risk assessment methodology to
identify and rank critical communications flows. The aim is
(1) to minimize the number of deployed detection devices,
and (2) to minimize communications delays by enforcing a
shortest-path routing algorithm. The framework functions in a
distributed manner. According to the authors, the design has
been experimentally verified.

B. Attack-Defence Modeling

The existing research in modelling and analysis of attacks
and the definition of strategies follows different directions. One
of the approaches is to limit the amount of time an attacker has,
and then consider the challenges presented from IoT devices
such as resource and performance constraints [8]. In [9], the
research is done to detect attackers predictability and proactive
defense by generating effective gaming strategies. The authors
in [10] study attackers strategy and dynamically compute the
best response strategy. Different types of information warfare
operations are modeled in [11]. Reactive adaptive defense uses
cyber epidemic dynamics model to enhance the resilience of
cyber systems against attacks [12], [13]. Modelling adversary
behavior and defense for survivability is studied in [14], and
understanding attack-defense dynamics and combining System
Dynamics (SD) with game theoretic approach is conducted
in [15]. In [16], the authors use Markov Decision Processes

theory for predicting possible attackers decisions and model
adaptive attackers behavior.

However, these approaches do not address the adaptive
evolutionary attack-defense dynamics that can exhibit rich
phenomena, e.g. the existence of multiple kinds of equilibria,
as stated in [17]. It has also been shown that while diversity-
maximizing is superior to adaptive attacker response strategies
for shorter duration attacker-defender engagements, it per-
forms sub-optimally in extended attacker-defender interactions
[18].

From this, we recognize that there is a need for more
sophisticated cyber defense systems that are flexible, adaptable
and robust. We need tools that are able to detect a wide variety
of threats and make intelligent real-time decisions.

III. ADAPTIVE DYNAMIC FRAMEWORK: SYSTEM
MODELLING AND ANALYSIS

The development of the adaptive dynamic framework, as
depicted in Fig. 2, requires conglomeration and interaction
of several components. The framework relies upon realistic
models for adaptive and dynamic attackers and defenders in
the Healthcare 10T, and models for healthcare systems.

We need to validate attacker models against real cases and
scenarios. A successful adaptive defender should significantly
outperform traditional static defense strategies and combat
adaptive attacker strategies. Running evolutionary algorithms
for the security in Healthcare IoT requires realistic models
for the strategies available to the attackers and defenders.
More importantly, we need to specify how these strategies
are adapted to the behavior of the opponent. We also need
to consider the environment as a multi-agent environment as
multiple attackers and defenders can coexist and cooperate.
Therefore, the development of these models requires a crucial
combination of mathematical theory, game theory, dynam-
ics, and research into real life security cases and scenarios.
Machine learning is known to have certain limitations when
applying to multi-agent environments [19]. Combining evolu-
tionary game theory with machine learning, i.e. reinforcement
learning, allows to overcome this limitation and accelerate the
convergence of the algorithms to good solutions.

A. Modelling Adaptive Attack Strategies

For modelling adaptive attack strategies, we consider mul-
tiple adversaries that attack a healthcare IoT system trying
to compromise confidentiality of the information transmitted
via the network or to change the information to their favor,
i.e. modify, replay, or inject false data. To model attack
strategies, we need to quantify the costs of attacks and their
corresponding gains. Costs and gains of attacks can vary
depending on types of attacks and data locations and assets.

B. Modelling Adaptive Defense Strategies

For modelling adaptive defense strategies, we consider
multiple components that represent various sensors, wearables,
smart homes and medical institutions networks and that form
a healthcare IoT system. To model defense strategies, we need
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Fig. 2. Conceptual view of Adaptive Cyber Security Framework for Healthcare IoT.

to quantify the costs of defenses and the losses if the defense
measures failed. These values depend upon information loca-
tion and types.

C. Modelling and Analysis of Attack-Defence Dynamics

Adaptive attack-defense evolutionary dynamics has many
parallels in biology and social sciences. System dynamics is
traditionally used for modelling systems in all these mentioned
domains and as such is a natural candidate for deriving
appropriate models of adaptive attack-defense evolutionary
models. To develop these models, we need to clarify the
interactions between different subsystems, including notions
of permitted and malicious actions.

Due to the complexity of the evolutionary dynamics, verifi-
cation is needed for guaranteeing the achievement of adaptive
security properties. Evolutionary games describing realistic
IoT security are expected to be highly complex and nonlinear.
There is a need for metrics to quantify both the outcome and
the characteristics of the evolutionary game. We envisage using
a combination of traditional metrics from game theory and
new metrics suitable for quantifying the complexity of the
evolutionary stable state.

IV. SIMULATION EXAMPLE

To demonstrate the adaptiveness of the dynamic framework
to cyber threats, we have implemented and analysed a simula-
tion example. We apply Evolutionary Game Theory to model

and analyse the dynamics of defence and attack strategies. In
this section, we give a short overview of Evolutionary Game
Theory, present the system and game models, and the results
of the simulation.

A. System Model

We consider a Healthcare IoT system that consists of the
following nodes: one Healthcare Instition, three Smart Homes
and two Smart Phones. The topology of this system is depicted
in Fig. 3. Smart Phone 1 snd Smart Phone 2 collect data from
one wearable device. Smart Home 1 collects data from three
wearables, Smart Home 2 collects data from two wearables,
and Smart Home 3 collects data from two wearables and Smart
Phone 2. All Smart Homes and Smart Phone 1 send their data
directly to Healthcare Instituion, while Smart Phone 2 sends
the collected data to Smart Home 3.

Further, we assume that the adversary can attack any node
of the system, and if unprotected, the data collected by this
node are compromised. To intercept or disrupt data sent from
any node, the adversary can choose either to attack this node
directly or to attack its parent node. For each node i, we
introduce the function 6(i) that returns a set of children for
this node.

For each node of the system, the defence cost and the attack
costs are denoted by ¢ and c?, respectively. The collected
data has a value. To quantify these values, we define an asset
value v(7) for each node. For this simulation, these values
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Fig. 3. Topology of Adaptive Cybersecurity Framework for Healthcare IoT used in Simulation Example.

TABLE I
THE GAME PARAMETERS FOR HEALTHCARE 10T EXAMPLE
Node v; cd cd ry rh
Healthcare Institution 80.0 16.0 4.0 0397 0.469

300 60 15

Smart Home 1 0.135  0.109
Smart Home 2 20.0 4.0 1.0 0.122 0.106
Smart Home 3 20.0 4.0 1.0 0.123  0.110
Smart Phone 1 10.0 20 05 0.115 0.098
Smart Phone 2 10.0 20 05 0.108 0.108

are randomly selected. For real systems, these values can
be quantified using any available risk assessment method.
These parameters are shown in Table I. The adversary can
choose between different levels of attack. We define the set
as S = sg, 51, ..., 5p. Similar to the attack levels, we define a
set of severity levels of defense as D = dy, dy, ...,dp. In this
example, we define four possible levels of attack and defense.
These values are set to: 0 % (not protected), 33.3 %, 66.6
%, 100 % (fully protected). All possible combinations of the
attack and defense levels over the set of the nodes construct
the attacker strategy space K and the defender strategy space
M respectively.

B. Evolutionary Game Theory

Classical game theory has been traditionally used for mod-
elling attacker-defender interactions. However, it is a static
approach and it does not capture the adaptation of players.
Certainly, this limitation is incompatible with the way the real

world acts in the most situations. Evolutionary game theory
[20] is inspired by the theory of evolution and was introduced
to overcome this limitation. It can model dynamic populations
of players with a distribution of strategies. Herein, populations
evolve according to the relative success of individual strategies
compared to the overall population. Refining the notion of a
Nash Equilibrium (NE) to an ability to evolve, this theory
introduced the Evolutionary Stable Strategy (ESS) concept,
that is sufficient to prevent alternative mutant strategies. It is
defined as follows. A strategy x is an ESS if for any strategy
y # « there exist some threshold fraction of mutants €, €]0, 1]
such that the following Eq. 3 holds for all € €]0,€,] :

Uz, exy+(1—e)xz)>Uly,exy+(1—e)xz) (1)

In other words, the strategy x is evolutionary stable if this
inequality holds for any mutant strategy, granted the popula-
tion share of mutants is sufficiently small [21]. The notion of
ESS is a refinement of NE in a way that if a strategy x is an
ESS then z is a Nash equilibrium, and if x is a strict Nash
equilibrium then x is an ESS.

Another important concept is the replicator dynamics [22],
which is described by the following equation.

6951(15)

ot
In this equation, x; is the the propotion of strategy ¢ in the
population = (z1,...2,), U(x;) is the expected utility of
strategy 4, and U, () is the average population utility. When

= (U(x;) — Ua(x)) x i(t) 2)



several individuals from a population play a game, they are
able to learn from the behavior of each other by comparing
their strategies to the average population result. They can then
apply the replicator dynamic equations to revise their current
strategies. The equation, therefore, governs evolution of the
strategies.

TABLE I
EVOLUTIONARY GAME MODEL FOR HEALTHCARE 10T EXAMPLE
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C. Game Model

Our game formulation is based upon the previously de-
fined evolutionary game framework [5] for modelling adaptive
attacks and defenses related to data integrity for advanced
metering infrastructures. For the sake of completeness, we
summarize the earlier model in this section. We also provide
further adjustments with respect to the Healthcare IoT. The
model is depicted in Table II. In this example, we define
two populations of players, the defenders and the adversaries.
The players are constraint by their budget. For both types of
players, the budget is set to 1. The game is assumed to be
one-shot, meaning that both the attacker and defender choose

AV
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Fig. 4. Evolution of average utility for the attacker and defender populations.
The results are given for 200 populations.

their strategies simultaneously, with no advance knowledge of
the opponents’ choices.

In Table II, we define the probability distributions over
strategy spaces for the defender and the adversary in the Eq. 3
and Eq. 4 respectively. For any pair of defender strategy m and
adversary strategy k, we calculate the node utility in the Eq. 5
and Eq. 6 respectively. These utilities depend on asset values,
costs defence and attack of the node 7, the asset values of the
children of this node and whether the children are protected
or not. The utilitities for the system are depicted in the Eq. 7.
Then the expected utilities for the strategy ¢ are defined in the
Eq. 8 and Eq. 9 and the average expected utilities are defined
in the Eq. 10 and Eq. 11. Average expected utilities in the
Eq. 10 and Eq. 11. The replicator equations for the defender
and the attackers are defined in Eq. 12 and Eq. 13, respectively.
For each node of the system, we calculate average defense and
attack rates as defined in Eq. 14 and Eq. 15. If ESS exists,
it is asymptotically stable in the replicator dynamics [20]. We
assume that if the replicator equation converges, it converges
to ESS.

D. Results of Simulation

The simulation is done for 200 population runs. The results
for the simulation of average utilities for defenders and adver-
saries are depicted in Fig. 4. Both graphs clearly show that
the system converges to a stable state after approximately 160
generations. We can assume that, after this point, the system
reaches its ESS. For the defender, it means that the system
has detected the subset of the strategies that gives the best
responce to the adaptive attacks.

The results for the evolution of defence and attack rates are
depicted in Fig. 5 and Fig. 6, respectively. From the results,
we observe that both types of players favour nodes from a
higher aggregation level, which increase their utilities. We can
clearly see that both graphs converge to a stable state after
approximately 160 generations. We can assume that, after this
point, the system reaches its ESS.
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Fig. 5. Evolution of defence rate for nodes for the case study. The X-axis
shows the number of populations. The Y-axis shows the defence rate. The
results are given for 200 populations.
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Fig. 6. Evolution of attack rate for the AMI nodes for the case study. The
X-axis shows the number of populations. The Y-axis shows the defence rate.
The results are given for 200 populations.

V. CONCLUSION AND FUTURE WORK

In this paper, we outlined main components of a dynamic
cyber security framework for protection of healthcare IoT in-
frastructures. Further, we simulate and evaluate the framework
using evolutionary game theory. The results of this simula-
tion represent the best possible response of the defence to
dynamic and adaptive attacks. Future work will include careful
consideration of applying machine learning and evolutionary
game theory to model adaptive attack-defense evolutionary
dynamics, development of suitable quantitative metrics, and
game simulations.
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