
Note no SAMBA/06/06
Authors Ragnar Bang Huseby

Magne Aldrin

Date January 2006

Updated documentation of a
Fortran 77 subroutine
implementing the catch limit
algorithm, January 2006

Ragnar Bang Huseby agne Aldrin

Norwegian Computing Center
Norsk Regnesentral (Norwegian Computing Center, NR) is a private, indepen-
dent, non-profit foundation established in 1952. NR carries out contract research
and development projects in the areas of information and communication tech-
nology and applied statistical modeling. The clients are a broad range of indus-
trial, commercial and public service organizations in the national as well as the
international market. Our scientific and technical capabilities are further devel-
oped in co-operation with The Research Council of Norway and key customers.
The results of our projects may take the form of reports, software, prototypes,
and short courses. A proof of the confidence and appreciation our clients have
for us is given by the fact that most of our new contracts are signed with previous
customers.

Title Updated documentation of a Fortran 77
subroutine implementing the catch limit
algorithm, January 2006

Authors Ragnar Bang Huseby <ragnar.huseby@nr.no>

Magne Aldrin <magne.aldrin@nr.no>

Date January 2006

Publication number SAMBA/06/06

Abstract

Keywords

Target group

Availability

Project

Project number

Research field

Number of pages 27

© Copyright Norwegian Computing Center

3

mailto:ragnar.huseby@nr.no
mailto:magne.aldrin@nr.no

Contents

1 Introduction . 7

2 Catch limit algorithm . 7

3 Computation details . 9

4 Description of numerical analysis methods 14
4.1 Gauss-Legendre integration rules 14
4.2 Brent’s method for solving equations 15

References . 16

A CATCHLIMIT - Manual description of the subroutine 17

B List of subroutines . 23

C Changes . 26

Documentation of CLA 5

1 Introduction

The Scientific Committee of The International Whaling Commission has tested
various procedures on simulated population and catch histories. In 1991 the Com-
mittee chose one procedure, proposed by Cooke, as the core element of the so
called “Revised Management Procedure”.

This procedure, as specified in (Rep. Int. Whal. Commn. 44, Annex H.), has
been implemented by the Norwegian Computing Center. The program, called
rmp, was described in (Fenstad et al., 1993). From this program, the module imple-
menting the catch limit algorithm has been extracted. The module was modified
in June 1999, and further changes of the code have been made in June 2000 and
November 2000. The version of November 2000 will be described in this note.

The catch limit algorithm is reviewed in Section 2. In Section 3, we describe
how the catch limit is computed in our implementation, and in Section 4, we
review the numerical analysis methods used.

Appendix A contains a manual description of the subroutine computing the
catch limit. Appendix B contains a list of the subroutines of the module. The dif-
ference between the various versions of the module is described in Appendix C.

2 Catch limit algorithm

In this section, the catch limit algorithm is reviewed. We use the same notation
as in (Rep. Int. Whal. Commn. 44, Annex H.). The input data consists of the time
series of historic annual catches and the time series of absolute abundance esti-
mates along with the information matrix of the logarithm of the estimates. In our
implementation we assume that

1. the abundance estimates are positive, and

2. the information matrix of the logarithm of the estimates is nonnegative defi-
nite.

The internal population model of the catch limit algorithm is defined by the fol-
lowing dynamics

P0 =
PT

DT

,

Pt+1 = Pt − Ct + 1.4184 µ Pt(1− (
Pt

P0

)2) (0 ≤ t < T), (1)

where
? Pt is the population size in numbers at the beginning of year t

Documentation of CLA 7

? Ct is the catch in numbers in year t

? DT = PT /P0 is the ratio of the population size at the beginning of year T to the
population size at the beginning of year zero, denoted stock depletion
? Year zero is the first year of the historic catch series used in assessments
? Year T is the year the catch limit is to be applied (i.e. the first year of an assess-
ment cycle). This is assumed to be the year immediately following the last year
of historic catch series used in the assessments
? µ is a parameter describing the productivity.

In this model, µ and DT are regarded as fixed, but unknown parameters, which
together determine the population history, as long as there has been any catches.
(In the case of no previous catches, a nominal catch of one whale in year 0 is as-
sumed.)

The abundance estimates are assumed to be log-normally distributed with a given
information matrix for the log estimates, estimated from the survey data. The for-
mula for the data likelihood is

Likelihood(µ, DT , b) ∝ exp
(
−1/2(a− p− β1)

′
H(a− p− β1)

)
(2)

where
? a is the vector of logarithms of the estimates of population size by year;
? p is the vector of logarithms of the modeled annual population sizes for the
years with population estimates, pt = ln(Pt);
? β is the logarithm of the bias parameter, thus b = exp(β);
? H is the information matrix of the a vector. If H is nonsingular, H = V −1 where
V is (an estimate of) the covariance matrix of the vector a.

The parameters µ, DT , and b are assigned a prior distribution which is uniform
over the region

[µmin, µmax]× [DT,min, DT,max]× [bmin, bmax], (3)

where µmin, µmax, DT,min, DT,max, bmin, and bmax are constants. Typical values are
µmin = 0.0, µmax = 0.05, DT,min = 0.0, DT,max = 1.0, bmin = 0.0, and bmax = 1.6667.
The joint likelihood function of the parameters µ, DT , and b is now determined.
It is given as follows:

Posterior(µ, DT , b) ∝ Prior(µ, DT , b) · Likelihood(µ, DT , b)s, s = 1/16 (4)

The presence of a deflation parameter 0 < s < 1 down-weights the survey infor-
mation relative to a strict Bayesian approach.

8 Documentation of CLA

The internal catch limit is the following function of γ, µ, DT , and PT :

LT =

0 if DT ≤ IPL

γµ(DT − IPL)PT if DT > IPL
(5)

where the slope γ and the internal protection level IPL are control parameters.
Typical values of γ and IPL have been 3 and 0.54, respectively. The internal catch
limit can be regarded as the catch limit in the hypothetical case of perfect knowl-
edge of population parameters and size. However, in the Bayesian formalism, it
is regarded as a random variable, with marginal posterior distribution obtained
from the joint posterior distribution of (µ, DT , b). The actual catch limit z is de-
fined as a certain percentile of the marginal distribution of LT . Hence z satisfies

P (LT < z|data) ≤ α ≤ P (LT ≤ z|data) (6)

for a given α. A typical value of α is 0.4102.

3 Computation details

Change of variables: Computation of the catch limit involves integration of
the right-hand side of (4) over various subsets of the parameter space. In order
to avoid solving for the population history for each functional evaluation, the
calculation is based on a change of variables from (µ, DT , b) to (µ, p0, b) where
p0 = ln(P0). The Jacobi determinant, J(µ, p0, b), of the mapping from (µ, p0, b) to
(µ, DT , b) is defined by

J(µ, p0, b) =

∣∣∣∣∣∣∣
∂µ
∂µ

∂µ
∂p0

∂µ
∂b

∂DT

∂µ
∂DT

∂p0

∂DT

∂b
∂b
∂µ

∂b
∂p0

∂b
∂b

∣∣∣∣∣∣∣ (7)

where |A| means the determinant of the matrix A. It follows that

J(µ, p0, b) =
∂PT

∂P0

−DT . (8)

In order to compute J(µ, p0, b) we use the recursion

∂P0

∂P0

= 1,

∂Pt+1

∂P0

= (1 + R− 3R(
Pt

P0

)2)
∂Pt

∂P0

+ 2R(
Pt

P0

)3 (0 ≤ t < T), (9)

where R = 1.4184 µ.

Documentation of CLA 9

It is implicitly assumed that p0 is a monotone function of µ when DT is fixed. This
will be the case if J(µ, p0, b) > 0 everywhere except possibly on the boundary,
or in the limit as P0 → ∞. This has not been proved in the strict sense. It has,
however, always turned out to be the case in our numerical computations. Thus,
there is sufficiently strong numerical evidence to regard the question as settled
for all practical purposes.

Splitting the integral over the parameter space: We need to find the integral
of the right-hand side of (4) over the region defined by (3). This integral is given
by ∫ µmax

µmin

∫ DT,max

DT,min

∫ bmax

bmin

Prior(µ, DT , b) · Likelihood(µ, DT , b)sdb dDT dµ. (10)

This integral is also equal to∫ µmax

µmin

∫ ∞

−∞

∫ bmax

bmin

f(µ, p0, b)db dp0 dµ, (11)

where

f(µ, p0, b) = Prior(µ, DT , b) · Likelihood(µ, DT , b)s · |J(µ, p0, b)|, (12)

and |J(µ, p0, b)| is the absolute value of the Jacobi determinant. Note that DT is
a function of (µ, p0). In the computation, it is convenient to split the integral at
DT = IPL. Thus, the integral is equal to Ilower + Iupper, where

Ilower =

∫ µmax

µmin

∫ p0,split(µ)

−∞

∫ bmax

bmin

f(µ, p0, b)db dp0 dµ, (13)

and

Iupper =

∫ µmax

µmin

∫ ∞

p0,split(µ)

∫ bmax

bmin

f(µ, p0, b)db dp0 dµ, (14)

where p0,split(µ) is the value of p0 such that

DT = IPL (15)

for a given µ, and IPL is as in (5).
Ilower is split further by splitting the range (−∞, p0,split(µ)] into the two intervals
(−∞, p0,lowmid(µ)] and [p0,lowmid(µ), p0,split(µ)], where p0,lowmid(µ) is the value of p0

such that
DT =

4

5
DT,min +

1

5
IPL (16)

for a given µ. By a change of variable from p0 to u where

p0 = p0,lowmid(µ) + (p0,lowmid(µ)− p0,split(µ))(
2

1− u
− 1), (17)

10 Documentation of CLA

and
dp0

du
= (p0,lowmid(µ)− p0,split(µ))

2

(1− u)2
, (18)

the integral over (−∞, p0,lowmid(µ)] is transformed to an integral over the finite
interval [−1, 1]. Thus Ilower = I−lower + I+

lower, where

I−lower =

∫ µmax

µmin

∫ 1

−1

∫ bmax

bmin

f(µ, p0, b)
dp0

du
db du dµ, (19)

and

I+
lower =

∫ µmax

µmin

∫ p0,split(µ)

p0,lowmid(µ)

∫ bmax

bmin

f(µ, p0, b)db dp0 dµ. (20)

Similarly, Iupper can be written Iupper = I−upper + I+
upper, where

I−upper =

∫ µmax

µmin

∫ p0,highmid(µ)

p0,split(µ)

∫ bmax

bmin

f(µ, p0, b)db dp0 dµ, (21)

and

I+
upper =

∫ µmax

µmin

∫ 1

−1

∫ bmax

bmin

f(µ, p0, b)
dp0

dv
db dv dµ, (22)

where p0,highmid(µ) is the value of p0 such that

DT =
4

5
DT,max +

1

5
IPL (23)

for a given µ,

p0 = p0,highmid(µ) + (p0,highmid(µ)− p0,split(µ))(
2

1− v
− 1), (24)

and
dp0

dv
= (p0,highmid(µ)− p0,split(µ))

2

(1− v)2
. (25)

Setting up an equation for the catch limit: In order to find z such that (6) is
satisfied, we need to compute P (LT ≤ z|data) for various values of z. P (LT ≤
z|data) is equal to∫ µmax

µmin

∫ DT,z(µ)

DT,min

∫ bmax

bmin
Prior(µ, DT , b) · Likelihood(µ, DT , b)sdb dDT dµ∫ µmax

µmin

∫ DT,max

DT,min

∫ bmax

bmin
Prior(µ, DT , b) · Likelihood(µ, DT , b)sdb dDT dµ

, (26)

where DT,z(µ) is the value of DT such that

LT = z (27)

for a given µ. LT is the internal catch limit defined by (5). The denominator of (26)
is equal to Ilower + Iupper. If z = 0, the numerator is equal to Ilower. If z > 0, the
numerator is equal to Ilower + Iz, where Iz is given by

Iz =

∫ µmax

µmin

∫ p0,z(µ)

p0,split(µ)

∫ bmax

bmin

f(µ, p0, b)db dp0 dµ, (28)

Documentation of CLA 11

p0,split(µ) is defined by (15), and p0,z(µ) is the value of p0 such that (27) is satisfied
for a given µ. It follows that z = 0 is the solution of (6) if Ilower/(Ilower +Iupper) ≥ α.
Otherwise, z satisfies

Ilower + Iz

Ilower + Iupper

= α. (29)

Approximating the catch limit: We are now ready to describe a procedure that
computes an approximation of the catch limit. In this procedure, the integrals
I−lower, I+

lower, I−upper, I+
upper, and Iz defined by (19), (20), (21), (22), and (28), respec-

tively, are calculated by numerical integration. The integrals are evaluated as iter-
ated integrals, and the order of integration is as indicated in the equations above.
Each iterated integral is approximated by an n-point Gauss-Legendre integration
rule, (Davis and Rabinowitz, 1975). The integer n, which is kept fixed in this pro-
cedure, is the number of functional evaluations in the approximation. Thus, the
approximation can be written as a sum

n∑
i=1

wi g(xi), (30)

where the wi’s are weights, the xi’s are abscissas, and g is the integrand. The
weights and the abscissas depend only on the interval of integration and not on
the function to be integrated. For a review of the Gauss-Legendre integration
rules, see Section 4.1.
The approximation procedure can be divided into the following steps.

1. Calculate the weights and the abscissas in the Gauss-Legendre integration
rule approximating the b-integral.

2. Calculate the weights and the abscissas in the Gauss-Legendre integration
rule approximating the µ-integral.

3. For each abscissa in the Gauss-Legendre integration rule approximating the
µ-integral, find p0,split(µ) defined by (15). This equation is solved numerically
by Brent’s method, (Press et al., 1992). For a brief review of Brent’s method,
see Section 4.2. In order to find the solution, DT is evaluated for various val-
ues of p0 by using (1). It is assumed that −5 ≤ p0,split(µ) ≤ 50.

4. For each abscissa in the Gauss-Legendre integration rule approximating the
µ-integral, find p0,lowmid(µ) defined by (16). This equation is solved in the
same way as in Step 3. It is assumed that −5 ≤ p0,lowmid(µ) ≤ 50.

5. For each abscissa in the Gauss-Legendre integration rule approximating the
µ-integral: calculate the weights and the abscissas in the Gauss-Legendre
integration rules approximating the v-integral in (20) and the u-integral in

12 Documentation of CLA

(19). Each weight in the u-integral is multiplied by dp0

du
evaluated at the corre-

sponding abscissa. dp0

du
is given by (18).

6. Evaluate an approximation of Ilower = I−lower + I+
lower. Each integral on the

right-hand side is approximated by a triple sum. In order to find the sums
the function f defined by (12) is evaluated at various points. At the points
satisfying −5 ≤ p0 ≤ 50, the population history, see (1), the Jacobi determi-
nant, see (8), and the right-hand side of (2), are calculated. Concerning the
calculation of the population history, there are some exceptions that occur if
P0 is large or the population size becomes small, see the documentation of the
subroutine pforw in Appendix B. The right-hand side of (2) can be written as

exp(−1

2
(D3 − β D2 + β2D1)) (31)

where

D1 =
n∑

i=1

n∑
j=1

Hi,j, (32)

D2 =
n∑

i=1

n∑
j=1

Hi,j (ayi
− pyi

), (33)

D3 =
n∑

i=1

n∑
j=1

Hi,j (ayi
− pyi

) (ayj
− pyj

), (34)

ayi
and pyi

are the logarithms of the abundance estimate and the modeled
population size, respectively, by year yi, and Hi,j; i = 1, 2, . . . , n; j = 1, 2, . . . , n

are the entries of the information matrix H . The sums D1, D2, and D3 are
computed only once for each (µ, p0). At the points where either p0 < −5 or
p0 > 50, f(µ, p0, b) is set to zero.

7. For each abscissa in the Gauss-Legendre integration rule approximating the
µ-integral, find p0,highmid(µ) defined by (23). This equation is solved in the
same way as in Step 3. It is assumed that −5 ≤ p0,highmid(µ) ≤ 50.

8. Calculate the weights and the abscissas relevant for the computation of I−upper

and I+
upper. This is done in the similar way as in Step 5. Gauss-Legendre inte-

gration rules approximates the p0-integral in (21) and the v-integral in (22).

9. Evaluate an approximation of Iupper = I−upper + I+
upper. This is similar to Step 6.

10. If Ilower/(Ilower +Iupper) ≥ α, the catch limit approximation is zero. Otherwise,
the catch limit approximation is the solution of (29) found by Brent’s method.

It is assumed that the solution is in [0, µmaxA∗], where A∗ is either Aτ , the
most recent abundance estimate, or Aτ−1, the second most recent abundance
estimate. If Aτ < Aτ−1 and the variance of the second most recent abundance

Documentation of CLA 13

estimate is smaller than the variance of the most recent abundance estimate,
A∗ = Aτ−1. Otherwise, A∗ = Aτ .

In order to compute the left-hand side of (29), the following tasks must be
completed.

a. For each abscissa in the Gauss-Legendre integration rule approximating
the µ-integral, find p0,z(µ) defined by (27). This equation is solved in the
same way as in Step 3.

b. Calculate the weights and the abscissas in the Gauss-Legendre integra-
tion rules approximating the p0-integral in (28).

c. Evaluate an approximation of Iz. This is similar to Step 6.

In extreme cases when f(µ, p0, b) ≈ 0 except on a very small subset of the
region of integration, the computed approximation of Ilower + Iupper might be
zero. In that case, the procedure fails to compute an approximation of the
catch limit. This type of failure becomes less likely as n grows.

Computing the catch limit by an iterative algorithm: The procedure above
approximating the catch limit using n-point Gauss-Legendre integration rules is
carried out for n = 8, 16, 32, 64, 128, 256, 512, 1024, or until the difference between
two successive approximations becomes less than a tolerance specifying the re-
quired accuracy.

Error handling: Our implementation does not handle the most extreme cases. If
there is evidence that the catch limit cannot be computed to the required accuracy,
this will be reported through the output of the main routine of the module. For
further details, see the specifications of the parameter IFAIL in Appendix A.

4 Description of numerical analysis meth-
ods

4.1 Gauss-Legendre integration rules
In this section, we give a brief review of the Gauss-Legendre integration rules.
For more details, see e.g. Section 2.7 in (Davis and Rabinowitz, 1975).

A Gauss-Legendre integration rule is a way of approximating the integral of
a function over an interval. The approximation is of the form∫ b

a

g(x)dx ≈
n∑

i=1

wi g(xi). (35)

14 Documentation of CLA

The weights wi’s and the abscissas xi’s are chosen such that∫ b

a

q(x)dx =
n∑

i=1

wi q(xi). (36)

whenever q is a polynomial of degree ≤ 2n − 1. This is the basic idea of Gauss-
Legendre integration rules.
The xi’s are the zeros of the polynomial p∗n, where the polynomials p∗0, p

∗
1, . . . sat-

isfy the following conditions.

1. p∗n is a polynomial of degree n.

2.
∫ b

a
(p∗n(x))2dx = 1.

3.
∫ b

a
p∗m(x)p∗n(x)dx = 0 whenever m 6= n.

The wi’s are given by

wi = −kn+1

kn

1

p∗n+1(xi)p∗′n (xi)
(37)

where kn is the coefficient of xn in p∗n(x).
The subroutine GRULE at page 369 in (Davis and Rabinowitz, 1975) is used in
our implementation. This subroutine computes the m = [(n + 1)/2] nonnegative
abscissas xi’s and the corresponding weights wi’s of the n-point Gauss-Legendre
integration rule when the interval of integration is [−1, 1].

In order to find the abscissas x′i’s and the weights w′
i’s in the general case when

the interval of integration is [a, b], we use the fact that the abscissas are located
symmetrically in the interval [a, b] and the weights corresponding to symmetric
points are equal. Then the following relations are valid for i = 1, . . . ,m:

x′i = c− d xi,

x′m+i = c + d xm−i+1,

w′
i = dwi,

w′
m+i = dwm−i+1, (38)

where c = (a + b)/2 and d = (b− a)/2.

4.2 Brent’s method for solving equations
In this section, we consider the problem of finding the value of x such that g(x) =

c where g is a function of one variable. This problem is equivalent to the problem
of finding x such that f(x) = 0, where f(x) = g(x) − c. Brent’s method solves
the latter problem numerically. The method combines root bracketing, bisection,
and inverse quadratic interpolation, (Press et al., 1992). In our implementation we
use the function zbrent in (Press et al., 1992) with a slight modification. In order

Documentation of CLA 15

to reduce the amount of computation we first search for a solution in a narrow
interval. If we do not succeed, we search for a solution in a broader interval. In
the implementation of (Press et al., 1992) there is no possibility of extending the
search interval.

References

Davis, P. and Rabinowitz, P. (1975). Methods of numerical integration. Academic
Press.

Fenstad, A., Helgeland, J., Aldrin, M., and Volden, R. (1993). High accuracy
computer program for the IWC catch limit algorithm. In SC/45/Mg3, IWC SC
Annual Meeting, Kyoto, Japan.

Martin, Reinsch, and Wilkinson (1968). Num. Math. 11.

Press, W., Teukolsky, S., Vetterling, W., and Flannery, B. (1992). Numerical Recipes
in FORTRAN. Cambridge University Press, 2nd edition.

Reinsch (1973). Comm. ACM 16.

Rep. Int. Whal. Commn. 44, Annex H. (1994).

Smith, B., Boyle, J., Dongarra, J., Garbow, B., Ikebe, Y., Klema, V., and Moler,
C. (1976). Matrix Eigensystem Routines. In EISPACK Guide Lecture Notes in
Computer Science, volume 6. Springer-Verlag.

16 Documentation of CLA

A CATCHLIMIT - Manual description of the
subroutine

Purpose: Calculate the catch limit for a single area according to the algorithm
of Section 2.

Restrictions: We assume that the abundance estimates are positive, and the
information matrix of the logarithm of the estimates is nonnegative definite. The
subroutine is unable to compute the catch limit in extreme cases.

Files: The file xrmpSub.f contains the module implementing the catch limit al-
gorithm including the subroutine CATCHLIMIT. The file xrmpSub_inc.f contains
definitions of some common blocks used by the module and must be included.

Specification:

SUBROUTINE CATCHLIMIT(NUM,ABDIM,CATCH,ABEST,INFOMATRX,R8WORKSPACE,

* AB_YEARS,IN_PPROB,IN_MU_MIN,IN_MU_MAX,IN_DT_MIN,IN_DT_MAX,

* IN_B_MIN,IN_B_MAX,IN_PLEVEL,IN_PSLOPE,IN_PSCALE,IN_NOF_RULE,

* OUT_QUOTA,accQuota,outDiff,npRule,

* POP,DEVPOP,IN_INFOLEVEL,IN_IOUT,IFAIL)

Parameters:

1. NUM - integer Input

On entry: The length of the catch history. Actual length of CATCH array

2. ABDIM - integer Input

On entry: Number of years with nonzero abundance estimates for the area
in question.

3. CATCH(NUM) - real*8 array Input

On entry: CATCH(Y) is the historic catch in year Y; Y = 1,2,...,NUM.
Corresponds to Ct in (1).
If there has been any catch, Y = 1 corresponds to the first year of catch (t = 0

in (1)).
Y = NUM corresponds to last premanagement year (t = T − 1 in (1)).
If there has been no catch, NUM should be equal to 1.
If NUM=1 and CATCH(1)=0, CATCH(1) is set to 1.
Constraint: CATCH(1) > 0 if NUM > 1.

Documentation of CLA 17

4. ABEST(ABDIM) - real*8 array Input

On entry: ABEST(I) is the absolute abundance estimates in year AB_YEARS(I); I = 1,2,...,ABDIM.

The vector of the logarithms of the entries in this array corresponds to a in
(2).
Constraint: ABEST(I) > 0.

5. INFOMATRX(ABDIM*(ABDIM+1)/2) - real*8 array Input

On entry: INFOMATRX(I) contains the lower triangle of the matrix H in (2)
stored row-wise.
Constraint: H is symmetric and nonnegative definite.

6. R8WORKSPACE(ABDIM*(ABDIM+7)/2) - real*8 array Workspace

Workspace needed to determine whether the matrix stored in INFOMATRX is
nonnegative definite.

7. AB_YEARS(ABDIM) - integer array Input

On entry: AB_YEARS(I) is the year of the absolute abundance estimate ABEST(I).
If AB_YEARS(I) < 1, the corresponding abundance estimate is treated as if
the sighting was performed in year 1.
Constrains: AB_YEARS(I) < NUM+1,
AB_YEARS(1) < AB_YEARS(2) < ... < AB_YEARS(ABDIM).

8. IN_PPROB - real*8 Input

On entry: Probability level for distribution of LT .
Corresponds to α in (6).
Typical value: 0.4102

9. IN_MU_MIN - real*8 Input

On entry: Minimum value of productivity parameter.
Corresponds to µmin in (3).
Typical value: 0.0

Constraint: IN_MU_MIN is nonnegative.

10. IN_MU_MAX - real*8 Input

On entry: Maximum value of productivity parameter.
Corresponds to µmax in (3).
Typical value: 0.05

Constraints: IN_MU_MAX is not less than 10−20 and
IN_MU_MAX is not less than IN_MU_MIN.

11. IN_DT_MIN - real*8 Input

On entry: Minimum value for stock depletion.
Corresponds to DT,min in (3).

18 Documentation of CLA

Typical value: 0.0

Constraint: IN_DT_MIN is nonnegative.

12. IN_DT_MAX - real*8 Input

On entry: Maximum value for stock depletion.
Corresponds to DT,max in (3).
Typical value: 1.0

Constraint: IN_DT_MAX is not less than IN_DT_MIN.

13. IN_B_MIN - real*8 Input

On entry: Minimum bias.
Corresponds to bmin in (3).
Typical value: 0.0

Constraint: IN_B_MIN is nonnegative.

14. IN_B_MAX - real*8 Input

On entry: Maximum bias.
Corresponds to bmax in (3).
Typical value: 1.6667

Constraints: IN_B_MAX is not less than 10−20 and
IN_B_MAX is not less than IN_B_MIN.

15. IN_PLEVEL - real*8 Input

On entry: Internal protection level.
Corresponds to IPL in (5).
Typical value: 0.54

Constraint: DT,min ≥ IPL ≥ DT,max.

16. IN_PSLOPE - real*8 Input

On entry: Catch control slope.
Corresponds to γ in (5).
Typical value: 3

17. IN_PSCALE - real*8 Input

On entry: Scaling factor.
The scaling factor is equal to 1√

s
where s corresponds to the deflation param-

eter in (4).
Typical value: 4

18. IN_NOF_RULE - integer Input

On entry: The maximum number of iterations allowed to compute the catch
limit. In iteration i, the catch limit is approximated by a 22+i-point Gauss-
Legendre integration rule.
Typical value: 8

Documentation of CLA 19

19. OUT_QUOTA - real*8 Output

On exit: Calculated catch limit.

20. accQuota - real*8 Input

On entry: Tolerance specifying the required accuracy. The iterative algorithm
terminates if the difference between two successive approximations of the
catch limit (determined by n

2
-point and n-point Gauss-Legendre integration

rules, respectively) is less or equal to accQuota.
The approximate solution of (29) is determined such that its accuracy is 0.25 ·
accQuota.
Typical value: 0.2.

21. outDiff - real*8 Output

On exit: Achieved accuracy, that is the difference between the last two ap-
proximations of the catch limit.

22. npRule - integer Output

On exit: The number of points used in the numerical integration in the last
iteration.

23. POP(0:NUM+1) - real*8 array Workspace

Various population size trajectories. Corresponds to Pt in (1).

24. DEVPOP(ABDIM) - real*8 array Workspace

Difference between abundance estimate and population size at years with
abundance estimates for various trajectories.

25. IN_INFOLEVEL - integer Input

On entry: Parameter controlling the level of intermediate printout produced
by this module. The larger value, the more printout.
Typical values: 0 - no printout,
1 - possible warnings,
2 - as 1 + print each catch limit approximation,
3 - as 2 + print value of integrals,
4 - as 3 + print some integration limits,
5 - as 4 + print input arrays,
6 - as 5 + print D1, D2, and D3 in (32-34),
7 - as 6 + print likelihood and density values.

26. IN_IOUT - integer Input

On entry: Unit determining file for intermediate printout.

27. IFAIL - integer Input/Output

On entry: If the user sets IFAIL to 0 before calling the routine, execution of

20 Documentation of CLA

the program will terminate if the routine detects an error. Before the program
is stopped, an error message is output. If the user sets IFAIL to -1 or 1 before
calling the routine, the control is returned to the calling program if the rou-
tine detects an error. If IFAIL = -1, an error message is output before the
control is returned.
On exit: If IFAIL = 0, no error is detected.
If IFAIL = 2, NUM < 1.
If IFAIL = 3, ABDIM < 1.
If IFAIL = 4, NUM > 1 and CATCH(1) is not positive.
If IFAIL = 5, ABEST(I) is not positive for some I.
If IFAIL = 6, the information matrix of the logarithm of the abundance esti-
mates is not nonnegative definite (At least one of the eigenvalues is negative).
Due to numerical inaccuracy a singular matrix may be declared as not being
nonnegative definite. In such cases, however, the magnitude of the lowest
eigenvalue computed by the module is small. This eigenvalue is printed if
IN_INFOLEVEL is positive.
If IFAIL = 7, AB_YEARS(I) > NUM for some I, or the sequence
AB_YEARS(I); I=1,...,ABDIM; is not strictly increasing.
If IFAIL = 8, IN_PPROB < 0 or IN_PPROB > 1.

If IFAIL = 9, MU_MIN > MU_MAX, MU_MIN < 0, or MU_MAX < 10−20.
If IFAIL = 10, DT_MIN > DT_MAX or DT_MIN < 0.
If IFAIL = 11, B_MIN > B_MAX, B_MIN < 0, or B_MAX < 10−20.
If IFAIL = 12, IN_PLEVEL < DT_MIN or IN_PLEVEL > DT_MAX.
If IFAIL = 13, accQuota is not positive.
If IFAIL = 14, nmax in include file is less than the number of rule points.
If IFAIL = 15, possible inaccuracies in computed population size history.
If IFAIL = 16, PT becomes larger than 0.5 · 1030.
If IFAIL = 17, the Jacobi determinant J(µ, p0, b) becomes negative at some
point.
If IFAIL = 18, for some µ it was not possible to find p0,split(µ) defined by (15).
If IFAIL = 19, for some µ it was not possible to find either p0,lowmid(µ) defined
by (16) or p0,highmid(µ) defined by (23).
If IFAIL = 20, for some µ it was not possible to find the integration interval
of the p0-integral.
If IFAIL = 21, the value of z in (28) becomes negative.
If IFAIL = 22, the catch limit could not be computed because the computed
approximation of (10) is zero.
If IFAIL = 23, it was not possible to solve the equation for the catch limit.
If IFAIL = 24, the required accuracy was not reached.
If IFAIL = -2, the input value of IFAIL is illegal. It is assumed that IFAIL

Documentation of CLA 21

value should be 0.

22 Documentation of CLA

B List of subroutines

The module contains the following subroutines and functions.

1. SUBROUTINE CATCHLIMIT - Main subroutine and gateway to the module. Per-
forms some tests on input parameters. Calls checkdat and calc_quota.

2. SUBROUTINE checkdat - Checks that the input arrays are legal.

3. SUBROUTINE checkposdef - Checks that the information matrix is nonnega-
tive definite.

4. SUBROUTINE rsp - calls tred3 and tqlrat to find the eigenvalues of a real
symmetric packed matrix. This subroutine comes from the eigensystem pack-
age EISPACK, (Smith et al., 1976). The part of the original subroutine that is
concerned with eigenvectors is omitted.

5. SUBROUTINE tred3 - reduces a real symmetric matrix, stored as a one-dimensional
array, to a symmetric tridiagonal matrix using orthogonal similarity trans-
formations. This subroutine is a translation of the Algol procedure tred3

in (Martin et al., 1968). This subroutine comes from the eigensystem pack-
age EISPACK, (Smith et al., 1976).

6. SUBROUTINE tqlrat - finds the eigenvalues of a symmetric tridiagonal ma-
trix by the rational QL method. This subroutine is a translation of the Algol
procedure tqlrat in (Reinsch, 1973). This subroutine comes from the eigen-
system package EISPACK, (Smith et al., 1976). Calls epslon and pythag.

7. REAL*8 FUNCTION epslon - estimates unit roundoff in quantities of a certain
size. This function comes from the eigensystem package EISPACK, (Smith
et al., 1976).

8. REAL*8 FUNCTION pythag - finds
√

a2 + b2 without overflow or destructive
underflow. This function comes from the eigensystem package EISPACK,
(Smith et al., 1976).

9. SUBROUTINE calc_quota - This is the shell of the iterative algorithm for com-
puting the catch limit, see Section 3. Calls putgauss (Step 1). Calls setSplit
(Step 2 and Step 3). Calls halfInt in order to compute approximations of
Ilower and Iupper (Steps 4-9). Calls zbrent in order to find the zero of the func-
tion fract (Step 10).

10. REAL*8 FUNCTION lhood - Computes the scaled likelihood (the right-hand
side of (4)) for a set of parameters.

Documentation of CLA 23

11. REAL*8 FUNCTION dens - Integrates the scaled likelihood (the right-hand side
of (4)) with respect to the bias parameter b. Multiplies the result by the Jacobi
determinant of the transformation in (8). The result is a function of p0 and
µ. In the exceptional case when p0 < −5 or p0 > 50, the result is set to zero.
Calls pforw in order to compute the population trajectory. Calls evalgauss in
order to integrate lhood.

12. SUBROUTINE pforw - Computes the population size trajectory and ∂PT

∂P0
for a

set of parameters. In the ordinary case, this is done by using (1) and (9). In
the exceptional case when Ps < 10−30 for some s, Pt is set to 10−30 for t =

s, s + 1, . . . , T . In the exceptional case when P0 > 2 · 1010, the population size
trajectory may not be accurately computed, and therefore the population size
trajectory is computed in two ways. If the results are significantly different,
this will be reported through the output value of the parameter IFAIL from
the subroutine CATCHLIMIT.

13. SUBROUTINE grule - Computes the [(n + 1)/2] nonnegative abscissas xi and
corresponding weights wi of the n-point Gauss-Legendre integration rule,
normalized to the interval [−1, 1], see Section 4.1.

14. SUBROUTINE putgauss - Sets up the coefficients for a n-point Gauss-Legendre
integration rule for the b-integral. Calls grule.

15. SUBROUTINE evalgauss - Approximates a one-dimensional integral of a func-
tion using the Gauss-Legendre integration rule, see Section 4.1.

16. SUBROUTINE prodgauss - Sets up integration w.r.t. µ and p0. This is Step 10b
in the approximation procedure described in Section 3. Calls grule and then
applies (38) to find the abscissas and the weights for the p0-integration. The
limits of the p0-integrals are found by calling getSplit to get the value of
p0,split(µ) (defined by (15) and set by setSplit), and by calling xbrent to find
p0,z(µ) (defined by (27)). In this case xbrent finds the zero of intLevel for the
appropriate choice of µ and DT .

17. SUBROUTINE halfgauss - Sets up integration w.r.t. µ and p0. This routine is
used in Steps 5 and 8 in the approximation procedure described in Section 3.
Calls grule to find the abscissas and the weights for the u- or v-integration,
and then applies (38) to find the abscissas and the weights for the p0-integration.
The limits of the p0-integrals are found by calling getSplit to get the value
of p0,split(µ) (defined by (15) and set by setSplit), and by calling xbrent to
find p0,lowmid(µ) (defined by (16)) or p0,highmid(µ) (defined by (23)). In this case
xbrent finds the zero of logptoldt for the appropriate choice of µ and DT .

24 Documentation of CLA

18. SUBROUTINE evalpgauss - Approximates a two-dimensional integral of a func-
tion using iterated integration and Gauss-Legendre rules (see Section 4.1) to
evaluate the iterated integrals.

19. REAL*8 FUNCTION logptoldt - Computes ln(PT)−ln(P0)−ln(DT). Calls pforw
in order to compute PT .

20. REAL*8 FUNCTION intLevel - Determines the internal catch limit (5) as a func-
tion of p0. Calls pforw in order to compute PT .

21. REAL*8 FUNCTION xbrent - Finds a zero of a function using Brent’s method
(see Section 4.2).

22. REAL*8 FUNCTION zbrent - Finds a zero of a function using Brent’s method
(see Section 4.2). Except for some additional parameters, this function is equal
to the function xbrent. Two copies are needed in order to avoid recursion.

23. REAL*8 FUNCTION getSplit - Gets the value of p0,split(µ) defined by (15) for
a given µ.

24. SUBROUTINE setSplit - Find the abscissas and weights for the µ-integral. De-
termines and stores the split points (p0,split(µ) defined by (15)) for each µ used
as abscissa in the integration rule. Calls grule and then applies (38) to find
the abscissas and the weights for the µ-integration. Calls xbrent in order to
find the zero of logptoldt (p0,split(µ)).

25. REAL*8 FUNCTION halfInt - Calculates a semi-infinite integral, Ilower or Iupper,
of the scaled likelihood (the right-hand side of (4)). Calls halfgauss. Calls
evalpgauss in order to integrate dens.

26. REAL*8 FUNCTION fract - Calculates the cumulative probability of the inter-
nal catch limit at x. Subtracts the probability level α from the result. Calls
prodgauss. Calls evalpgauss in order to integrate dens.

Documentation of CLA 25

C Changes

Changes between versions of April 1999 and June 1999: In the version of
April 1999, the variance covariance matrix of the logarithm of the abundance esti-
mates was input. Moreover, this matrix was assumed to be diagonal and specified
by a one- dimensional array containing the diagonal elements only. In the version
of June 1999, however, the information matrix of the logarithm of the abundance
estimates is input. This matrix does not need to be diagonal.

When IN_INFOLEVEL is positive, a warning message is printed if this matrix
is not nonnegative definite. Due to numerical inaccuracy a singular matrix may
be declared as not being nonnegative definite. In such cases, however, the magni-
tude of the lowest eigenvalue computed by the module is small. In order to guide
the user, this eigenvalue is printed along with the warning message.

In the version of June 1999, D1, D2, and D3 in (32-34) are printed if IN_INFOLEVEL
is 6 or greater. In order to print likelihood and density values, IN_INFOLEVEL must
be at least 7.

In the version of June 1999, IFAIL = 6 on exit, means that the information
matrix of the logarithm of the abundance estimates is not nonnegative definite.

Changes between versions of June 1999 and June 2000: In the version of
June 2000, the sequence AB_YEARS(I); I=1,...,ABDIM; should be strictly increas-
ing. This is checked in the subroutine checkdat.

In the version of June 2000, the upper bound of the interval in which the so-
lution is seeked can be greater than in the version of June 1999. In the version of
June 1999, the upper bound is µmaxAτ , where Aτ is the most recent abundance
estimate. This bound could be too small if the variance of the most recent abun-
dance estimate is large.

In the version of June 2000, the upper bound is µmaxAτ−1, where Aτ−1 is the
second most recent abundance estimate, provided that Aτ < Aτ−1, and the vari-
ance of the second most recent abundance estimate is smaller than the variance
of the most recent abundance estimate. Otherwise, the upper bound is the same
as in the version of June 1999.

Changes between versions of June 2000 and November 2000: The initial
value of last_quota in calc_quota is changed from 0 to −1030 in order to avoid
too early termination.

Changes between versions of November 2000 and June 2005: All real vari-
ables and constants are now in double precision. The Jacobi determinant J(µ, p0, b),

26 Documentation of CLA

which should be a nonnegative number, is now allowed be a tiny negative num-
ber in order to avoid termination due to numerical errors.

Changes between versions of June 2005 and January 2006: Three new in-
put parameters are added. These are IN_PSLOPE, IN_PSCALE and IN_NOF_RULE. In-
troduction of IN_PSLOPE and IN_PSCALE implies that the values of γ in (5) and s

in (4) can be specified by the user. In the previous versions, γ and s were always
equal to 3 and 1/16, respectively. In addition, the maximum number of iterations
allowed to compute the catch limit can now be adjusted through the parameter
IN_NOF_RULE. In the previous version IN_NOF_RULE was equal to 8.

In the updated version, the upper limit of the interval in which the solution is
seeked, is multiplied by two until the interval contains a solution. If we could find
exact values of the integrals, we would eventually find a solution. This is because
Iz is a bounded and nondecreasing function of z. However, an approximation of
Iz1 may be larger than an approximation of Iz2 even if z1 < z2. If this happens,
the upper limit will not be increased further, and the search terminates without
finding a solution. Failing to find a solution in this case, will not be serious if the
integrals can be computed with higher accuracy in subsequent iterations.

Documentation of CLA 27

	Contents
	Introduction
	Catch limit algorithm
	Computation details
	Description of numerical analysis methods
	Gauss-Legendre integration rules
	Brent's method for solving equations

	References
	CATCHLIMIT - Manual description of the subroutine
	List of subroutines
	Changes

