

Wolfgang Leister, Sjefsforsker Norsk Regnesentral

contributions by
Shahrzade Mazaher, Jørn Inge Vestgården,
Bjørn Nordlund, Bent Østebø Johansen, Håvard Hegna

12. mars 2004

Grid Seminar - Why

- invite
 - Technology providers,
 - infrastructure-providers,
 - users,

- ...

to talk about grid computing

- Present techologies and their use,
- Discuss use of grid and applications
- Inform public about emerging technologies

Grid Seminar - Program

•	KI. 0930	Frammøte, kaffe +	
•	KI. 1000	Presentasjon av NR	v/ Lars Holden
•	KI. 1015	Introduksjon	v/ Wolfgang Leister
•	KI. 1030	Muligheter innen grid	v/ Jan Petter Strømsheim, KUF Dept.
•	KI. 1050	Grid aktiviteter i IBM,	v/ Loek Vredenberg
•	KI. 1110	Grid prosjekt E-Diamond Grid aktiviteter i SGI,	v/ Loek Vredenberg v/ Anders Øvreseth,
•	KI. 1130	Grid aktiviteter i USIT	v/ Andreas Botnen
•	KI. 1150	Grid aktiviteter i NR	v/ Wolfgang Leister, et.al.
•	KI. 1210	Lunch med oppsummering og framtidsvyer	
•	KI. 1300	Slutt	

ICT @ NR

- Important Application Areas:
 - Multimedia
 - ICT Infrastructure and networking
 - Software Engineering
 - Security
 - Emerging Technologies
 - Learning and Knowledge Management

grid

Grid initiative @ NR why

- •health care,
- •banking and finance,
- •visualization
- •multimedia
 - •...
- Identify Application areas for grid
 (many advertise with use of Globus Toolkit)
 (many advertise with use of grid technologies)
- Generate projects with research content in various application areas

Grid initiative @ NR how

- Grid (definitions, philosophy, etc.)
- Experiences with Globus Toolkit GT3
- Definition of application areas (besides number crunching)
- Relations to other technologies (e.g., GT3, Web-Services, .NET, Java)
- Demonstrator applications
- Cooperation with technology providers (e.g., IBM, SUN, SGI) and infrastructure providers
- Cooperation with users of grid technologies

A computational grid is a distributed infrastructure that appears to an end user as one large computing resource across organization boundaries.

A computational grid is a distributed infrastructure that appears to an end user as one large computing resource across organization boundaries.

Seamless access to all kinds of resources

Related, but not identical with grid:

- Distributed computing RPC
- Autonomic computing
- Peer-to-Peer
- Load-balancing

- Grid has focus on coordinated resource sharing among a dynamic set of entities, often referred to as a virtual organization.
- Resource management functionality:
 - Locating, initialization, coordination, query, monitoring, control, accounting, secure access, inter-organizational
- Security:
 - Authentication, secure data transfer, fine grain access control, delegation of credentials, management policies

OGSA & OGSI

- OGSA = Open Grid Services Architecture
- OGSA supports, via standard interfaces and conventions, the creation, termination, management and invocation of stateful, transient services as named, managed entities with dynamic, managed lifetime.
- OGSI = Open Grid Services Infrastructure
- Globus Toolkit is an implementation of OGSI

Application Example

- Image processing to detect features in medical images for diagnostics
- Process on
 - Specialized hardware?
 - Cluster of machines?
 - Central Main Frame?
 - In house?
 - Outsourced?

Better: Grid

- User sends application to grid;
- Grid finds appropriate resource, sends data and application there
- Some resource(s) perform operation
- User can survey operation
- Result is sent to user
- Bill is sent to users organization
- Security issues are handled

Application Example (2)

Globus Toolkit

- The Globus Toolkit (GT) is an open source software toolkit used for building grids.
- GT includes software services and libraries for
 - Resource monitoring,
 - Resource Discovery
 - Resource Management
 - Security
 - File management

Information infrastructure Data management

Communication

Fault detection

Portability.

Globus Toolkit

- GT 2.4 (not longer developed)
- GT 3.0 (current release)
- GT 4 ...

Major changes between releases!

Globus toolkit

- the globus toolkit™
 www.globustoolkit.org
- GT components include:
 - MDS
 - GRAM, RSL, DUROC
 - GSI
 - GASS, GEM, RIO
 - GloPerf, HBM

- Monitoring / Discovery
- Resource Allocation
- Grid Security Infrastructure
- File access, execution mgmnt, remote io
- Performance mgmt, system health and status (Heart beat monitor)

GT Protocols

Application				
•••				
GRAM GridFTP MDS				
HTTP FTP LDAP WSDL	Grid Services Abstraction			
TLS/GSI / SOAP	other transports			
IP				

Other Grid Architectures

- Distributed or Autonomic Computing
 - Computer Animation Computation,

e.g., netq (1987, Univ. Karlsruhe)

- SETI@Home, Folding@Home, ...
- Java Spaces

• ...

END OF PART 1

Grid Seminar @ NR

NR PRESENTATION - PART 2

Grid Seminar @ NR

Grid Experiences @ NR

- Test grid installation based on GT 3
- Sample application based on GT 3 and Java/Linux
- Sample application based on .NET and Web Services
- Evaluations of GT and grid technology

- Grid has focus on coordinated resource sharing among a dynamic set of entities, often referred to as a virtual organization.
- Resource management functionality:
 - Locating, initialization, coordination, query, monitoring, control, accounting, secure access, inter-organizational
- Security:
 - Authentication, secure data transfer, fine grain access control, delegation of credentials, management policies

What is grid NOT ...

- ... division into partial problems
- ... computing cluster / distributed computing
- ... Peer-to-Peer / Autonomic computing
- ... compile once run everywhere

Applications must be adjusted!

OGSA, OGSI, and Web Services

Grid Service

Grid service is an extended Web service

Microsoft .NetGrid

- Cooperation between Microsoft Research UK and UK National e-science center
- Evaluation whether .NET suitable for development of OGSI services

.NetGrid Demo

- Application implements a service to perform a simple transformation in an image
- Client software implemented in C#.
- Proxy classes generated by WSDL

.NetGrid Conclusions

- MS.NetGrid is quite immature
- Many errors in documentation
- Configuration / setup of tools is time consuming
- Applictation development quite easy after configuration is done.

Globus toolkit

- Collection of tools to implement grid
- Implementation of OGSI standard
- Core technologies: Java, XML, Web services, Internet
- Current Version: GT3 (30. juni 2003)
- Information infrastructure how to find a resource
- Resource management how to run a job
- Data management how to distribute data
- Grid security infrastructure

Information infrastructure

- MDS, Globus Monitoring and Discovery Service (GT2)
- Index service (GT3)
- Based on LDAP
- Grid Resouce Information Service (GRIS): querying resources for their current status
- Grid Index Information Services (GIIS): knitting together arbitrary GRIS services

Security infrastructure

- Two security infrastructures, both based on GSI (Grid Security Infrastructure) and PKI standards
 - Transport-level security. (httpg protocol, based on https)!
 phased out!
 - Message-level security (on SOAP level). Security per message

Resource management

- GRAM, Grid resource allocation management (GT2)
- MMJFS, Master and managed job factory service (GT3)
 - Resource allocation
 - Submitting jobs (remotely running executables and receiving results)
 - Managing job status and progress

EXAMPLE: \$ globusrun -r glad -o '(&executable=gsiftp://laks/mydir/myprog)'

GRAM, how to run a job

EXAMPLE: \$ globusrun -r glad -o '(&executable=gsiftp://laks/mydir/myprog)'

Data management

- GridFTP, Grid File Transfer Protocol (GT2)
- RFT, Reliable File Transfer Service (GT3)

Globus Toolkit Versions

	GT2	GT3
GSI	SSL, X.509	Same as GT2
GRAM	Port 2119	Web services + GT2
MDS	Port 2135	Web services + GT2
GridFTP	Port 2811	Same as GT2

Security Models

Traditional

GT security infrastructure

- Each grid user has a unique identity
- Uses X.509 certificates
- Entities accepting each other's CAs can communicate
- Stolen keys (keys stored in software)
- Certificates revocation (CRL not checked)
- Based on a individual mapping from grid user identity to local user identity (many users to keep track of)
- Policy enforcement in virtual organizations

OGSA Security

- New work to create a grid security architecture.
- Part of the OGSA specification
- Three main principles:
 - Integration (with existing security infrastructure)
 - Interoperation (with existing systems)
 - Trust (between endpoints, crossing organisation boundaries)

Discussion

- What are the applications?
 - How can these be implemented?
 - GT 3 is a toolkit, applications must be adjusted
 - RESEARCH PROJECT
- Which issues are not covered by grid?
 - But are needed ...
 - RESEARCH PROJECT

END OF PART 2

Grid Seminar @ NR

