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Abstract

Data squashing was proposed by DuMouchel et al. (1999) as a tool for reducing
a massive data set to a considerably smaller and more manageable one, that
represents the original data set well for the purpose of inference or prediction.
Data squashing is not a sub-sampling technique and the new records are pseudo
data points generated on the space spanned by the original data set. The idea
is to find these new points so that a certain set of empirical moments of the
squashed data set is equal to the same set of empirical moments of the original
data set.

This paper reviews data squashing and applies the method to data from
the generalized Pareto distribution (GPD). This family of distributions is of
particular interest because it includes heavy tailed distributions. As a traditional
data reduction technique such as simple random sampling can be inadequate in
representing heavy tails and inference based on such samples can suffer from poor
accuracy, it is of interest to see if data squashing can improve upon sub-sampling
for heavy tailed data.

As a first step in exploring the properties of data squashing for heavy tailed
data, we consider one GPD which has finite third order moment and one GPD
which has finite expectation but infinite higher order moments. In a simula-
tion experiment we explore how this affects data squashing compared with sub-
sampling with respect to maximum likelihood estimation of the tail parameter
in the GPD.
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Our results indicate that data squashing works well and show that the vari-
ability of the ML estimates are considerably smaller for data squashing than
for the applied sub-sampling technique. We also see improvements in the bias,

although the difference here is smaller.
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1 Introduction

During the last decade the general progress of information technology has led to the
development of powerful data base and data warehouse products that are now widely
used. This development encourages to collect data for the purpose of extracting in-
formation that can assist in decision making, strategic planning or system monitoring,
which is often referred to as data mining (DM) or knowledge discovery in data bases
(KDD). The data may be historic or collected and processed in real time. The data
bases are growing in size, and often traditional techniques for analysis and visualization
are either not applicable or become severely CPU demanding. The standard approach
to analysis of these massive data set have been to scale up the computer hardware and
software in terms of increasing memory and processing capacity and by designing or
choosing statistical methods that are less sensitive to the amount of data.

Data squashing represents an alternative way to approach massive data sets. Rather
than increasing the computing power and choosing statistical methods that can handle
large amounts of data, the data set of interest is represented by a smaller data set
that can be used in combination with any advanced statistical method and software.
From a modeling perspective this gives considerable flexibility. Not only one, but
several models can be fitted and it is feasible to use methods for model checking and
diagnostics. When possible, it is appealing to use a squashed data set for exploratory
analysis and for choosing an appropriate model and then apply this final model to the
full data set.

Naturally, conventional sampling techniques such as simple random sampling or
stratified random sampling, provide the same reduction in data size as data squashing
and are computationally faster and simpler. However, as demonstrated in DuMouchel

et al. (1999) a squashed data set can be superior to a data set generated by simple
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random sampling in terms of improved accuracy in inference, which compensates for
the increase in computing time and effort.

In this paper we review data squashing as proposed in DuMouchel et al. (1999). Our
aim is to study data squashing for heavy tailed data through simulation experiments.
In a data reduction context, heavy tailed data are interesting because sub-samples
often need to be large in order to represent the full data set well. With a massive and
heavy tailed data set, one may experience a trade-off between having a sub-sample of
manageable size and having a sub-sample that yields the desired accuracy when used
for inference. We have chosen to use the generalized Pareto distribution (GPD) for our
studies and we focus on its tail parameter. The maximum likelihood estimate of this
tail parameter has no explicit form and is found by numerical optimization.

We apply data squashing to two data sets sampled from the generalized Pareto
distribution and compare data squashing with stratified random sampling for maximum
likelihood estimation of the tail parameter. The first of the test distributions has
finite moments up to order three, while the second has finite expectation, but infinite
moments of higher order. It is of interest to see if data squashing is sensitive to these
features.

As data squashing is very time consuming we have not been able to make the sim-
ulation study as extensive as we have wished, and further work is required to fully
understand and verify the properties of data squashing for heavy tailed data. Fur-
thermore, our results are based on an implementation of data squashing which has yet
to be tested and assessed completely. However, the results we have obtained indicate
that data squashing improves upon stratified random sampling. Most importantly,
the variability in the ML estimates is considerably smaller for data squashing than
for stratified random sampling. Secondly, there is a tendency toward improvement in
the bias of the ML estimates based on the squashed data sets, but the difference is
smaller than with respect to the variability. The best results are obtained for the test
distribution with the least heavy tail, indicating that an increase in tail heaviness does

have some influence on the properties of data squashing.

2 Data Squashing

In our presentation of data squashing we consider a massive data set with records
X, = (Xi1,-..,Xig),i = 1,..., N, where @ is the fixed number of variables in each



record. In our application of data squashing we will only consider scalar data, i.e.
@ = 1. The data set has a simple flat structure and can be represented as a N x @)
matrix. The data set is massive in the sense that NV is very large, typically of the order
10° or 10%, while ) is moderate. Of course, if the statistical methods we are interested
in applying are computationally demanding, then also with a smaller data set one can
encounter computational difficulties. For clarity of presentation we will assume that the
data set contains continuous variables only. The modifications to include categorical
variables are minor and described in DuMouchel et al. (1999).

The aim of data squashing is to generate a new and managable data set of records
Y, =(Y,...,Y0),7=1,...,M with M < N. Non-negative weights wy, ..., wy are
associated with each record and generated so that Z;‘il w; = N. In contrast to a data
set generated by simple random sampling or other sampling techniques, the squashed
data set is not a sub set of the massive data set. As will become apparent, the squashed
points are new pseudo points generated on the space spanned by the full data set. The
idea is that the squashed data set is used for inference in place of the original data
set, for instance in doing maximum likelihood estimation or fitting regression models.
However, it is important that the applied methods incorporate the weights associated
with the squashed points.

Generating the squashed points and weights is treated as a problem of determining
M(Q + 1) unknown variables. The aim is that the empirical moments of the squashed
data set approximate the empirical moments of the massive data set. More precisely,
we want K > M(Q + 1) empirical weighted moments of the squashed data set to be
equal to or match the corresponding empirical unweighted moments of the full data
set, that is

M Q N Q
2w [I0—agme =3 T] K —ap™e k=1....K M
j=1 g=1 =1 g=1

We are allowed to refer to the equations (1) as a matching of moments because we will
use Z;\il w; = N which means that the scaling factor of empirical moments cancels.
Furthermore, we define an empirical moment about a = (as, ..., ag) through exponent
vectors py, ..., Px of non-negative integers. In principle, such an exponent vector can
be any arbitrary sequence of non-negative integers. A natural choice is to start with

vectors of zeros and ones and let the integers increase with k. One possibility is to take
P1 = (07"'70)7p2 = (1707"'70)7"'7PQ+1 = (07"'7071)7PQ+2 = (2707"'70)"'7
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a.s.o.
As a simple illustration consider (1) for scalar data X3,...,Xy. With pp, =k — 1

and with a = 0 the equations in (1) reduce to

N

M
S w YT =3 XY k=1,... K. (2)
j=1

=1

If we want to generate only one squashed point and weight, we need K = 2 equations.
This yields Y = X and w = N.
DuMouchel et al. (1999) suggest to determine the pseudo points Y7,..., Y, and

weights wq, ..., wy by minimizing

K N Q M Q 2
S(Y,w) = Zuk < (Xiq — ag)™ — ij H(Y}q - aq)pkq) ] (3)

k=1 i=1 g= j=1  q=1

for optimization weights ug, K = 1, ..., K under the constraint that the weights should
be positive and the points should not extrapolate, i.e. w; > 0, V5 and min; X;; <
Yie <max; X;,, 7 =1,...,M,q = 1,...,Q. Hence, the original problem of finding
the roots in (1) is transformed to an optimization problem. The optimization weights
ug, k =1,..., K determine which moments are approximated most accurately and the
demand to match moments exactly is abandoned. Typically there is no unique global
minimun and several local minima.

DuMouchel et al. (1999) propose a Newton-Raphson procedure that uses second
order derivatives to minimize (3). A logistic transformation of the unknowns is used to
maintain the constraints on the squashed points and weights. DuMouchel et al. (1999)
suggest to take up = 1000 for the moments of order 0 and 1 defined by p; = 0,px =
(Pre—1) = L,pkr = 0,7 #k — 1),k =2,...,Q + 1 and for the pure squares defined by
Pr = (Pe(k—@-1) = 2,P6r = 0,7 # k—Q—1),k = Q+2,...,2Q+1. For the second order
cross terms and for the higher order terms, the weights decrease with increasing order
of the expansion and are normalized so that Z§=2Q 4+2Ur = 1. Observe that one does
not perform a constrained optimization with Z]Ni1 w; = N but includes this criterion
as a term in the objective function. DuMouchel et al. (1999) analyse the properties
of data squashing with respect to CPU demands and conclude that the running time
increases linearly in ) and as a result of choosing M = log, N it increases in (logy N)2.

The moment matching criterion (1) may also be derived using a Taylor expansion

argument. Assume that the original N data records are iid from a density f(x;; @) with
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log-likelihood [, (X1, ...,xxN;0) = Zf\il log f(x;;0). Recall that the mth degree Taylor
polynomial P,,(x) for a function f: R — R around a point a = (ay, ... ,aq) is given
by

q

m Q Q
LCRICRSEDIDY (0 a0 g~ a0)

It follows that the Taylor expansion of the log-likelihood in the vicinity of a point
a — (al,...,aQ) is

K Q

(1, xn;0) & Y g [ [ (g — ag)™. (4)

Here g depends on 8 and on log f through its derivatives calculated in a but not on
the data. If the Taylor expansion is taken up to order m then K = > " (Q+:_1) and
Pk, k =1,..., K are all possible vectors of non-negative integers such that Z * 1 DPkg <

m. In (4) the first term has p; = (0,0,...,0) and corresponds to the constant term
f(a) in the expansion. The sum of the next ) terms in (4) corresponds to the Taylor
expansion of order one with py = (prr—1) = L,pkr = 0,7 #k - 1),k =2,...,Q + 1.
More generally, the rth order of the Taylor approximation is represented by (Q” 1)
terms in (4). We want the squashed data set to represent as much as possible of the
information on @ contained in the full data. Hence, we want the weighted log-likelihood
of the squashed data set I, (y1,...,ym;0) = Z;Vil wjlog f(y;; @) to approximate the
full likelihood. By equating the Taylor expansions of the log-likelihood of the full and

squashed data sets and by changing the order of summation we obtain

K M Q K N
S 03 T e =303 T —

k=1  j=1 q=1 k=1  i=1 q=1
Since this is to hold for any model f and hence for any g, the equality needs to hold
term by term. This is exactly the moment matching criterion (1) with pg, k=1,..., K
determined by the Taylor expansion.

An important feature of data squashing is that the massive data set can be grouped
into regions and data squashing performed independently for each region. DuMouchel
et al. (1999) apply two different techniques for grouping the data in regions: hyper-
rectangles which suffer from a curse of dimensionality and are suitable only when
@ is small and data spheres (Johnson and Dasu, 1998) which can be used with high
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¢ |B(X) E(X?) E(X?) E(X%)
0.25| 4/3 16/3 64 o0

0.5 2 00 00 00

Table 1: Moments of the GPD with £ = 0.25 and £ = 0.5 for 8 = 1.

dimensional data. An advantage of grouping the data is that the Taylor approximation
is improved for each region, compared with an approximation on the full data set. Also,
grouping allows to make use of parallel computing in the minimization.

We may summarize data squashing in three steps: (i) An optional grouping of the
data and determination of how many squashed points that should be generated for
each region. (ii) Calculation of empirical moments of the massive data set. (iii) The
optimization that finds the squashed points and weights for each region.

Data squashing is a novel techique and to our knowledge the literature is limited
to Madigan et al. (2000), Owen (1999) and Berg et al. (2000). Madigan et al. (2000)
present a version of data squashing that uses the density function of the original data
records, so that the squashed data set may only be used for inference in the assumed
model. Owen (1999) suggests to combine the ideas of data squashing and sub-sampling
by determining the weights for the records in a sub-sample by matching moments, while
Berg et al. (2000) give an overview of data squashing and present a collection of ideas

for further research.

3 The Generalized Pareto Distribution

In extreme value modeling the generalized Pareto distribution (GPD) is used to model
excesses over high thresholds. Embrechts et al. (1997, Sections 3.4 and 6.5) cover the
field and give a thorough treatment of the GPD and its properties. A random variable
X that is distributed according to a GPD with parameters £ # 0 and 8 > 0 has density
function

1

f@)= 501 +£§>—1/€—1,

with support z > 0 if £ > 0 and z € [0,—3/¢] if £ < 0. For £ = 0 the GPD
is the exponential distribution with expectation 1/8. While 3 is a scale parameter,

¢ determines the tail of the distribution. The larger &, the more heavy is the tail.
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The expectation is finite if £ < 1 and the rth moment is finite if r < 1/£. Table 1
summarizes moments about zero for the distributions that will be used in the simulation
experiments in Section 4. Figure 3 shows the corresponding density functions.

When X = (Xj,...,Xy) are iid from a GPD, the log-likelihood is
§

N
I(¢,5:X) = —nlog f — (% +1) Y log(1+ 5X0) (5)
=1

In Section 4 we will do maximum likelihood estimation on a squashed data set Y =

(Y1,...,Yy) with weights w = (wq, ..., wys) assumed to follow a GPD. The weighted
log-likelihood is

1(&6,Y,w) = ijlogﬁ Zw]log 1-}—5 Y;). (6)

For unweighted and weighted data the maximum likelihood estimates of £ and [ are
obtained by numerical maximization of (5) and (6) respectively. In the simulation
experiments in Section 4 we focus on the tail parameter £ and explore how the accuracy
of the maximum likelihood estimate of £ based on sub-sampled and squashed data sets

varies with the heaviness of the tail.

4 Simulation Experiments

In our simulation experiment we do data squashing for two data sets of NV = 100 000
records sampled from the GPD with tail parameters £ = 0.25 and ¢ = 0.5 and fixed
scale parameter = 1. The true densities are shown in Figure 3. The size of these data
sets by no means call for data squashing as any software easily handles this amount of
data. However, we believe the findings to be of interest for larger and multidimensional
data sets with similar characteristics, where reducing the data would be needed.

The intension of the study is to explore the properties of data squashing for our two
test distributions that differ in tail heaviness, with respect to accuracy in the obtained
ML estimate of the tail parameter. We compare data squashing with stratified random
sampling. In DuMouchel et al. (1999) data squashing is compared with simple random
sampling rather than stratified random sampling as done here. In our opinion data
squashing and simple random sampling can not be compared on an equal basis as the
grouping done in data squashing induces a spread in the generated points that is not

achieved without stratification in sub-sampling.
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Figure 1: The density function for the generalized Pareto distribution with & = 0.25
(dashed line) and & = 0.5 (solid line) for B = 1.

Application of a global optimization routine, such as for instance simulated anneal-
ing, in the data squashing would ensure that the squashed data set would correspond
to a global minimum in (3). Unfortunately, these algorithms require too much CPU
and are not applicable in practice. In a realistic optimization setting one must settle
for a computationally feasible local optimization algorithm. Hence, the squashed data
set will depend on the type of optimization algorithm used and its initialization.

We applied a C-language implementation of data squashing that is currently being
developed at the Norwegian Computing Center. This implementation uses a Newton-
Raphson algorithm with multiple starting points (we used 1000) to find the squashed
data set. As default values for the optimization weights in (3) for the constraint on
the weights and the first and second order moments this implementation takes uz = 1
for k = 1,2, 3 respectively. For the moments of higher order the default values are
uy, = 0.573 /c where c is chosen so that ZkK:4 ur, = 0.001. This is basically the same
strategy as applied in DuMouchel et al. (1999), but with the objective function (3)
scaled by 0.001. However, DuMouchel et al. (1999) do not specify how they let the
weights decrease for k < 4, nor do they give any recommendation on how this should

be done. Furthermore, we used 500 as an upper limit of the number of iterations in



the optimization.

To simulate data from the GPD and to do maximum likelihood estimation in model
(5) we used the S-Plus software of McNeil (2000). Some minor adjustments were
required to use the weighted log-likelihood (6) for the squashed data.

To average out the effect of the random initialization of the Newton-Raphson proce-
dure, we repeated the squashing B = 50 times and did maximum likelihood estimation
for each of the obtained data sets. From this we obtained ML estimates El, e ,EB
and found the mean point estimate E\DS = Zle @/B and the estimated standard
deviation s = (X2, (& — &ns)?/(B — 1))/2. The estimated mean squared error
Vps = Zle(gb - EORG)2 /B is found with respect to the ML estimate of the full data
set gom and takes into account both the estimated bias and the variability of the ML
estimates. For the two test data set EORG was found to be 0.247 and 0.497 respectively,
slightly below the true values.

Data squashing was applied to the each test data set for two different grouping
strategies. With the first approach, the data was grouped into 10 bins of 10000 records
according to the percentiles 0.1,0.2,...,0.9. The second approach used 20 regions of
5 000 records each, determined by using the percentiles 0.05,0.1,...,0.9,0.95 as bin
borders. For each of these two grouping strategies we generated 1, 3 or 5 squashed
points in each region. Hence, we applied a total of 6 different squashing techniques.
The squashed data sets had M = {10,30,50} and M = {20, 60,100} data points for
the two grouping strategies respectively. Following (1) and (2) we needed to match 1,
5 and 9 empirical moments as well as the constraint on the weights to generate 1, 3
and 5 points and weights per region. Hence, some of the empirical moments that are
matched correspond to theoretical moments that are infinite, except for when only one
point is found per region.

The program was run on a Sun Ultra 30 with an UltraSPARC-II 300 MHz processor.
When only one point is generated per region as with M = 10 and M = 20, the region
mean is always a unique global minimum. For each region the squashing took seconds
and there is no need to repeat the squashing as exactly the same data set is found each
time. The minimization to find 3 and 5 points in each region is more difficult as (3)
is then a 6 and 10 dimensional surface. To generate 3 and 5 points per region using
multiple starting points took approximately 4.75 and 9 minutes per region.

To each of the applied squashing techniques the corresponding stratified random

sampling technique used the same data regions and the same number of points were
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£ =0.25

10 30 50 20 60 100
MEeAN | 0.223 0.243 0.254 | 0.246 0.246  0.249
SD - 0.008 0.011 - 0.003  0.003
MSsE 5.91e-04 8.1e-05 1.63e-04 | 2e-06 1.1e-05 1.2e-05

£=05
10 30 50 20 60 100
MEAN | 0.557  0.523  0.475 | 0.540 0.513  0.497
Sp - 0.016  0.016 = 0.013  0.018
MSE | 0.0036 9.39e-04 7.24e-04 | 0.0019 4.29¢-04 3.18¢-04

Table 2: Maximum likelihood estimation of & based on the 6 squashing techniques for
the full data sets with &€ = 0.25 and £ = 0.5. For each squashing technique and for each
value of € a total of 50 squashed data sets were collected to assess the performance of the
procedure. The tables show the estimated mean, standard deviation and mean squared
error of the ML estimates for the resulting squashed data sets. The left and right hand
side of the tables separate the grouping strategy with 10 and 20 regions respectively.

sampled with replacement from each region. To quantify the bias and variability asso-
ciated with stratified random sampling B = 10000 subsamples were generated for each
sub-sampling approach and test data set. The estimated mean ESRS, standard deviation
Osrs and mean squared error Jgzs were found as for data squashing.

The estimated mean, standard deviation and mean squared error of the ML esti-
mates for the data sets generated by data squashing and stratified random sampling are
shown in Tables 2 and 3 respectively. Figure 2 shows the true log-likelihood for £ = 0.25
and 10 log-likelihoods for data sets generated by data squashing and sub-sampling. Fig-
ure 3 shows log-likelihoods for & = 0.5. Observe that to ease the comparison of the
log-likelihoods in Figures 2 and 3 the log-likelihoods were shifted upwards and plot-
ted within the same horizontal coordinates. Also, the log-likelihood for the stratified
random samples were found by assigning equal weights of N/M to each sampled data

point.
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£ =0.25

10 30 90 20 60 100
MEeAN | 0.115 0.191 0.210 | 0.201 0.227 0.233
SD 0.267 0.174 0.134 | 0.143 0.093 0.074
Mse | 0.089 0.033 0.019 | 0.023 0.009 0.006

£=05

10 30 90 20 60 100
MEAN | 0.394 0.455 0.469 | 0.463 0.483 0.487
SD 0.287 0.187 0.145 | 0.156 0.099 0.078
Mse | 0.093 0.037 0.022 | 0.025 0.010 0.006

Table 3: Mazimum likelihood estimation of & based on stratified random sampling. For
each full data set with &€ = 0.25 and &€ = 0.5 a total of 10 000 independent stratified
samples were generated for each of the 6 combinations of grouping and data reduction,
and the ML estimate of & found for each sample. The tables show the estimated mean,
standard deviation and mean squared error based on these 10 000 estimates. The left
and right hand side of the tables separate the grouping strategy with 10 and 20 regions

respectively.

The standard deviation of the ML estimates obtained using asymptotic normal
theory are found to be approximately 0.004 and 0.005 for £ = 0.25 and £ = 0.5. These
results are similar for data squashing and stratified random sampling.

Comparing Tables 2 and 3 we see that the results for data squashing and stratified
random sampling differ with respect to both the bias and the variability of the ML
estimates. The most marked difference between the two techniques is found for the
variability of the ML estimates, which is considerably smaller for data squashing for
both test data sets and for all the applied squashing techniques. For ¢ = 0.25 the
estimated variability associated with the squashing procedure is of the same order as
the asymptotic variability associated with the maximum likelihood estimation. Figure
2 shows that the log-likelihoods of the squashed data sets approximate the true log-
likelihood much better than the log-likelihoods of the sub-sampled data sets for £ =
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0.25. For ¢ = 0.5 (Figure 3) the pattern is similar, although the log-likelihoods are
slightly more spread than for £ = 0.25.

The results also show that there is a tendency for the bias to be smaller when data
squashing is applied, although the improvement is not of the same order as for the
variability. For & = 0.25 the bias is consistently lower for data squashing, while for
& = 0.5 the results for data squashing and stratified random sampling are quite close,
and for M = 20 and M = 60 the point estimate based on stratified random sampling
has a smaller bias. For both techniques, ZORG is covered by the interval (E — 20, E +20)
or an even shorter interval.

It should be noted that for stratified random sampling some of the ML estimates
were negative for £ = 0.25 and M = 10, 20, 30, 50 as well as for £ = 0.5 and M = 10, 30.
For £ = 0.25 and M = 10 this occurred for approximately every third sampled data
set, which explains the resulting low value in Table 3 for this strategy.

For reference it should be noted that simple random sampling does much worse
than stratified random sampling. The bias of the estimates is larger and correspond
to an effect in the second decimal of the ML estimates, while the estimated standard
deviation is considerably larger, in fact it is approximately doubled for M = 60 and
M = 100.

We compared the variability associated with data squashing in the lower region
(the 5000 and 10 000 smallest values with 20 and 10 regions respectively) and in the
the tail region (the 5000 and 10000 largest values) with the following experiment. For
the 50 collected squashed data sets the squashed points in the lower region and tail
region were sorted in increasing order. The ratio of the mean and standard deviation of
the first, second, third, etc. points and were found, and the procedure repeated for the
associated weights. The results indicated that the points and weights in the tail region
were more variable than in the lower region. The variability in the tail region was
larger for £ = 0.5 than for & = 0.25, while the variability of the points and weights in
the lower region was unaffected by an increase in . This indicates that there could be
a variability associated with data squashing that increase with the tail heaviness. Also
the results of Table 2 shows that data squashing works best for the test distribution
with the least heavy tail.

As data squashing is very time consuming, we have been unable to make the sim-
ulation study as extensive as we would have liked and we feel that further work is

needed to fully explore the properties of data squashing for heavy tailed data. Our
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Figure 2: The marginal log-likelihoods for & = 0.25 for 10 squashed data sets (upper
panel) and 10 independent stratified random samples (lower panel) plotted in B\ found
from each reduced data set. In each plot the solid line shows the log-likelithood of the full
data set. The number of regions (R) and size of the reduced data set (M) is indicated
in the title of each plot.



DATA SQUASHING: £ =0.5
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Figure 3: The marginal log-likelihoods for §& = 0.5 for 10 squashed data sets (upper
panel) and 10 independent stratified random samples (lower panel) plotted in B\ found
from each reduced data set. In each plot the solid line shows the log-likelihood of the full
data set. The number of regions (R) and size of the reduced data set (M) is indicated
in the title of each plot.
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simulation experiment is limited to only one full data set of 100 000 records for each
of the two tail parameters £ = 0.25 and £ = 0.5, and we compared data squashing
with stratified random sampling for this data set only. To average out the variation
in the ML estimates induced by the sampling of the data, more than one full data
set should have been created and analysed. We performed a small test which shows
that the results would be similar for other data sets. We generated 15 independent
data sets of 100 000 records for £ = 0.25. The first column of Table 4 shows the ML
estimates for the full data sets and confirm that they do not vary significantly. For each
of these data sets a total of 5 (as opposed to 50 in our full experiment) squashed set
were found for the squashing technique that applied 10 regions and 3 points per region.
The ML estimate for each of the 5 squashed sets were found and their average is listed
in the second column of Table 4. Observe that the estimates in Tables 2 and 4 are not
directly comparable as the estimates in Table 4 are based on fewer squashed data sets.
The third column of Table 4 shows the ML estimate based on 10000 stratified random
samples. The results presented in Table 4 show that the ML estimates obtained from
data squashing and stratified random sampling do not vary much over the data sets.
The results indicate that data squashing is perhaps slightly more sensitive to the data
set than stratified random sampling. Both techniques consequently underestimate the
tail parameter, except for two cases of data squashing. The bottom line of the table
shows the mean value over the 15 data sets and indicates that the difference in the bias
of the two techniques might be somewhat smaller than for our single data set.

We experienced occasional problems in realizing the constraint on the weights of
the squashed data set. Observe that we did not do constrained optimization with
Z].Ail w; = N. Instead, we followed DuMouchel et al. (1999) and included this criterion
as a term in the objective function (3) and we used Z]Nil w;— N to measure convergence.
In particular, failure to reach Zﬁl w; = N was an apparent feature when we tested
data squashing for two other distributions with even heavier tails than our two test
distributions. Furthermore, our preliminary findings suggest that this problem only
occurs for squashing in the tail region. As realizing Z;M:l w; = N is favoured in
the optimization through the specific optimization weight u; we used, we interpret
these problems as a sign of difficulties in finding a local minimum in the optimizer
and as an indication of that we might have used a too strict limit for the maximum
allowed number of iterations in the optimization. This suggests that our study needs

to be verified and supplemented by experiments in which the optimization is monitored
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EORG EDS g\SRS
0.247 0.243 0.191
0.256 0.251 0.200
0.253 0.251 0.197
0.2556 0.242 0.199
0.248 0.238 0.191
0.247 0.245 0.191
0.252 0.246 0.197
0.247 0.234 0.190
0.249 0.239 0.194
0.252 0.252 0.198
0.252 0.247 0.196
0.256 0.247 0.200
0.252 0.254 0.197
0.254 0.249 0.200
0.252 0.243 0.199
0.251 0.240 0.195
0.251 0.245 0.196

Table 4: Mazimum likelihood estimates for the full data set (first column), the mean
of the ML estimates of 5 squashed data sets (second column) and 10 000 sub-sampled
data sets (third column) for 15 independent data set of 100 000 samples from the GPD
with € = 0.25. The squashed and sub-sampled data sets were found using 10 regions
and 3 point per region. The top and bottom lines are the result of the full experiment

of Tables 2 and 3 and the mean over the 15 independent data sets respectively.
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closely and the surface (3) searched extensively to obtain more information on is shape.
This could involve allowing more iterations, adjusting the optimization weights or
applying other optimization routines.

Our simulation experiment is limited to two test distributions only. We believe
that it is of interest to do a full study of data squashing for GPDs with even heavier
tails. As indicated above, some preliminary results suggest that data squashing could
be more difficult for distributions with infinite expectations.

The effect of the grouping is an issue of general importance for data squashing.
Our results do not indicate that any particular grouping strategy is preferable, but
we believe that an experiment in which the the number of regions, the size of the tail
region and the number of squashed point in each region is varied beyond the study of
this paper, is of interest.

Our study has been restricted to using maximum likelihood estimation to compare
and evaluate data squashing and sub-sampling. Other possible criteria for comparison
are the method of probability-weighted moments or direct comparison of estimated
quantiles, see Embrechts et al. (1997, Section 6.3.2).

5 Conclusions

This paper has presented the general technique of data squashing for reducing a mas-
sive data set and applied it to data from the generalized Pareto distribution. The
generalized Pareto distribution was chosen because it provides a range of heavy tailed
distributions with finite as well as infinite moments. A natural competitor to data
squashing is sub-sampling techniques, and it has been our purpose to compare the two
techniques with respect to maximum likelihood estimation.

Our simulation results show that data squashing can be very useful for heavy tailed
data. For our test distributions data squashing clearly captures the likelihood better
than what is achieved by stratified random sampling and estimation is associated with
a substantially smaller variance. The best results are obtained for the test distribution
with the least heavy tail.

The test data sets that have been squashed and sub-sampled are small and their size
presents no obstacle to any statistical method. However, the results are interesting as
they indicate that data squashing can improve on sub-sampling for higher dimensional

and larger data sets with heavy tail characteristics. Although there are aspects of
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our results that we are unable to explain fully and there is a need for further work
to understand the properties of data squashing for heavy tailed data, we feel that the

results are promising.

Acknowledgments

This work was supported by The Research Council of Norway (NFR) under grant no.
110673/420 (Numerical Computations in Applied Mathematics). The software used
for the simulation experiments was developed by Ragnar B. Huseby at the Norwegian
Computing Center under grant no. 121144/420 (Knowledge, data and decisions). The
simulation experiments were conducted using computing facilities at the Norwegian
Computing Center. The author wishes to thank Ragnar B. Huseby and Erlend Berg
for introducing her to data squashing and for many interesting discussions. Many
thanks to Ola Haug for guidance with the S-Plus software of Alexander McNeil and to

Arnoldo Frigessi for many useful comments.

References

BEerG, E., Dimakos, X. K., AND HUuseEBY, R. B. (2000). Squashing massive data
sets: An overview of existing methods and ideas for further research. Norwegian
Computing Center, Report no. 961.

DuMoucHEL, W., VoLINSKY, C., JOHNSON, T., CORTES, C., AND PREGIBON,
D. (1999). Squashing flat files flatter. In Proceedings of the Fifth ACM Conference
on Knowledge Discovery and Data Mining, pp. 6-15.

EMBRECHTS, P., KLUPPELBERG, C., AND MikoscH, T. (1997). Modelling extremal
events. Springer-Verlag, Berlin Heidelberg.

JoHNSON, T. AND Dasu, T. (1998). Comparing massive high dimensional data sets.
In Proc. of the 4h Intl. Conference on Knowledge Discovery and Data Mining (KDD),
pp- 229-233.

MADIGAN, D., RAGHAVAN, N., DUMOUCHEL, W., NAsON, M., Possg, C., AND
RIDGEWAY, G. (2000). Likelihood-based data squashing: A modeling approach to

instance construction. Data Mining and Knowledge Discovery. To appear.

19



MCcNEIL, A. (2000). http://www.math.ethz.ch/ mcneil /software.html. EVIS Software

for Extreme Values in S-Plus.

OWEN, A. (1999). Data squashing by empirical likelihood. Available at http://www-

stat.stanford.edu/~owen/reports/.

20



