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The authors are to be congratulated on a most stimulating paper on com-
bining geostatistics with the flexibility of generalized linear models, as well
as on the efficient implementation of their method through the techniques of
Bayesian computation.

A crucial question for the statistician when analyzing spatial data is whether
to model the full probability distribution of the phenomenon or only to model
statistical moments of low order. Kriging prediction is based on specified
parametric forms for the mean and covariance (or variogram) functions only.
In comparison, the authors go further and specify a wide class of parametric
models for the underlying probability distribution of the data. This approach
is neccessary if the aim is to analyse extremes or excursion sets of the process.

Alternatively, the Kriging approach of modelling mean and covariance para-
metrically may be extended to a wide class by modeling these moments
nonparametrically. This approach may be preferred in data-rich applications
when the purpose is spatial prediction and assessment of prediction errors.
In Hgst (1996) a flexible framework for prediction of a spatial process with
unknown trend and correlated residuals is presented. For an example in 1-D,
consider a continuous random process y(s), where s is a location on the real
line. Let y(s) have the decomposition

y(s) = f(s) + v(s),

where f(s) is a smooth trend function and v(s) is a zero-mean, second-order
stationary residual process.

In applications where the trend is unknown, it may be unrealistic to specify it
parametrically. In particular, the Kriging predictor will be biased under the
model given above. Consequently, I suggest a local parametric approximation
to the trend function f within a window of radius A and I derive an optimal
predictor for this local model. The global properties of the predictor will be



governed by h and a kernel function, and a framework is obtained in which
both local polynomial regression estimation (Hastie and Loader 1993; Fan
and Gijbels 1996) and Kriging prediction can be described. In particular, I
give an expression for the prediction error which includes also a bias term.

Figure 1 shows simulated data from a process of the type described above,
and Figure 2 shows the estimated 95% prediction intervals for a local linear
predictor and a linear trend Kriging predictor. The bandwidth A in the
proposed predictor was chosen by cross-validation. Figure 2 indicates that
Kriging has smaller prediction errors than the local polynomial predictor.
However, cross-validation shows that the proposed method has both smaller
prediction errors and more realistic estimates of these errors than Kriging.
This is due to bias effects and to confounding of trend and residual structure
in the Kriging approach.

Future extensions of this approach may include nonparametric modelling
of the spatial covariance function, possibly along the lines of Sampson &

Guttorp (1992).
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Figure 1: Simulated data (dots) and underlying trend function (broken line)
for model with exponential covariance function with range 0.054, c = 0.1 and

f(s) =10s® — 15s* + 6s°



%) o |
< -

S

S

)

—

=

c

o v |
= O

O

S

)

S

o

X 9O |
n O

o

0.0 0.2 0.4 0.6 0.8 1.0

Location

Figure 2: Prediction intervals from local polynomial Kriging (full line) and
universal Kriging for the data of Figure 1



