
Note no No number
Author Geir-Arne Fuglstad

Date 10th July 2009

Finding the Largest
Eigenvalues of Large
Matrices

Geir-Arne Fuglstad

The author
Student from NTNU on summer job

Norwegian Computing Center
Norsk Regnesentral (Norwegian Computing Center, NR) is a private, independ-
ent, non-profit foundation established in 1952. NR carries out contract research
and development projects in the areas of information and communication techno-
logy and applied statistical modeling. The clients are a broad range of industrial,
commercial and public service organizations in the national as well as the inter-
national market. Our scientific and technical capabilities are further developed
in co-operation with The Research Council of Norway and key customers. The
results of our projects may take the form of reports, software, prototypes, and
short courses. A proof of the confidence and appreciation our clients have for
us is given by the fact that most of our new contracts are signed with previous
customers.

Title Finding the Largest Eigenvalues of Large
Matrices

Author Geir-Arne Fuglstad

Date 10th July 2009

Publication number No number

Abstract
The Lanczos iteration for finding the largest eigenvalues has been implemented
in C++. This implementation has been tested against ARPACK which is created
for this purpose, but written in Fortran. The test were with regards to both speed
and precision.

Keywords

Target group

Availability

Project

Project number

Research field

Number of pages 17

© Copyright Norwegian Computing Center

3

Contents

1 Introduction . 5

2 Background on IRLI . 5

3 Implementation of IRLI . 6
3.1 Step 1: Initial Lanczos iteration 6
3.2 Step 2: Calculate eigenvalues and find error bounds 7
3.3 Step 3: Shifting unwanted eigenvalues 7
3.4 Step 4: Expand basis 8
3.5 Possible shortcomings 9

4 Tests of speed and accuracy 9
4.1 Summary . 9
4.2 Geometric progression with factor 1.0001 10

4.2.1 Dependency on the the size of the initial matrix . . . 10
4.2.2 Dependency on the number of eigenvalues 10
4.2.3 Dependency on the size of the iteration 11

4.3 Geometric progression with factor 1.05 12
4.3.1 Dependency on the size of the inititial matrix 12
4.3.2 Dependency on the number of eigenvalues 12
4.3.3 Dependency on the size of the iteration 13

4.4 Larger matrices . 14
4.5 Conclusions . 14

5 Brief tests on proposed use 14
5.1 Euclidean case . 14
5.2 Rotating azimuth field 16

6 Closing remarks . 17

Finding the Largest Eigenvalues of Large Matrices 4

1 Introduction

The process of finding all eigenvalues of a matrix becomes very time consum-
ing for large matrices. Therefore iterative methods such as implicitly restarted
Arnoldi iterations has been created for finding some part of the spectre of a mat-
rix. Here the focus will be on finding the largest eigenvalues, and only symmetric
matrices will be considered. For symmetric matrices there exists a faster variant
of the implicitly restarted Arnoldi method called the implicitly restarted Lanczos
method. The implementation of this in C++ is described in the following sections.

In addition to the implementation, this report describes the tests done. These tests
explore the dependency on run time versus the size of the matrix, the number of
eigenvalues calculated, the number of vectors used to calculate the eigenvalues
and the density of the eigenvalues. Here density will be determined by what the
closest eigenvalues are.

From this point on the abbreviation IRLI will be used for implicitly restarted
Lanczos iteration.

2 Background on IRLI

Let A be the n× n matrix for which one wants to compute the eigenvalues. Then
the IRLI method for finding the k largest eigenvalues of A is based on the Krylov
space of A corresponding to some start vector, say v0. The Krylov space of A of
size m corresponding to v0 is

Km(A, v0) = span(v0, Av0, . . . , A
m−1v0).

If one consider v0 as a linear combination of the eigenvectors of A, one would
expect the components of the largest eigenvectors to dominate the vector Am−1v0

as m increases. However, taking this product is potentially numerically unstable.

This is solved by using the Lanczos iterations, this algorithm is a stable way of
creating an orthonormal basis for Km(A, v0). Furthermore the IRLI is a way of
creating a iterative method from the Lanczos iterations in which each iteration
improves the estimates for the eigenvalues and the eigenvectors of the largest
eigenvalues. The implicitly restarted part of the name refers to the fact that after
a fixed number of steps, saym, the iterations are stopped and the basis is reduced
to size k again and thereafter expanded to size m again. This allows for the use of
less storage and less orthogonalizations.

Finding the Largest Eigenvalues of Large Matrices 5

3 Implementation of IRLI

3.1 Step 1: Initial Lanczos iteration
The desire is to create a Krylov space in which information of the largest eigen-
values can be found, therefore if no information exists a random starting vector
is as good as can be chosen.

The implementation may be provided with a start vector, if not a random starting
vector v1 is created. This starting vector is then normalized to a norm of 1, and
will provide the starting point of the iterations. The other input needed is m the
number of steps of the Lanczos iterations to do. This will determine the size of
the matrix V and H obtained from the process. The process will give a m × m

symmetric tridiagonal matrixH and a n×mmatrix V , with orthonormal columns.

Set v0 = 0 and β0 = 0, then the algorithm used may be represented as follows. At
step i = 1 let f̂i = Avi and calculate αi = f̂Ti vi. Then orthogonalize f̂i against the
two previous vectors vi and vi−1 by using the calculated αi and βi−1 by setting

fi = f̂i − αivi − βi−1vi−1.

This is theoretically enough to create a vector fi which is orthogonal to all pre-
vious vectors vj for j = 1, . . . , i due to the symmtery of A, however, few steps
are required in finite arithmetic before the loss of orthogonality becomes too big.
Therefore an additional step is added here, fi is orthogonalized against all previ-
ous vectors. This is called a full reorthogonalization scheme and is done at each
iteration.

The vector is then normalized and used as the next vector, by calculating βi =

||fi|| and setting vi+1 = fi

βi
. This is done for i = 1, . . . , k, but for the last iteration

i = k the vector vk+1 is not calculated. If the norm of f becomes smaller than the
tolerance during the iteration, the iteration is stopped and the discovered set of
vectors are consider to span a invariant subset of A and are expected to give error
estimates smaller than the tolerance for all eigenvalues of h.

After completion the set {v1, . . . , vk} constitute a set of orthonormal vectors and
the calculated values may be used to represent A in a near tridiagonal form. Let

V =
[
v1 . . . vk

]
and

H =


α1 β1

β1 α2
. . .

. βk−1

βk−1 αk

 .

Finding the Largest Eigenvalues of Large Matrices 6

Then one can write
AV = V H + fke

T
k , (1)

where eTk = [0 . . . 0 1]. From this one can see that if (θ, s) satisfies

Hs = θs,

then
AV s = V Hs+ fke

T
ms = θV s+ fke

T
ms.

Thus if we can make the last term on the right hand side small, (θ, V s) will be a
good approximation to an eigenpair of A. Additionally the columnspace of V is
Kk(A, v1), so we would expect the large eigenvalues of A to dominate the eigen-
values of H . One can also see this as H represents the projection of A onto the
krylov space. To drive the error on the right hand side towards zero the iteration
may be continued until ||f || becomes small at the cost of storage space and in-
creasingly more expensive orthogonalizations, or the iterations may be implicitly
restarted as explained in the following subsections.

At each step i of the iterations a matrix vector product of complexity O(n2) and a
full reorthogonalization of complexity O(in) are required. This gives a total com-
plexity of O(kn2 + k2n).

3.2 Step 2: Calculate eigenvalues and find error bounds
From step 1 one has the from given in equation (1). Let m be the number of it-
erations that were done in step 1 and k the number of eigenvalues of A that are
desired.

The algorithm then computes the eigenvalues of H and sorts them in to the k
largest σ1(H) and the p = m − k undesired eigenvalues σ2(H). For each desired
eigenvalue the error is estimated as

||AV s− λV s|| = ||f ||||eTms|.

The eigenvalues λ is considered converged when this size is less than tolλ. If tol
is less than machine precision, the machine precision is used as tolerance instead.

Finding the eigenvalues of a symmetric tridiagonal matrix has a complexity of
O(m2), however, as eigenvectors are also computed it has a complexity of O(m3).

3.3 Step 3: Shifting unwanted eigenvalues
Let m be the size of the Lanczos iteration created, k the desired number of eigen-
values and n the size of A.

To this step some theory is required. A QR-shift of H with shift λ means to set
H = QTHQ where Q is the Q from the QR factorization of H − λI . The implicit

Finding the Largest Eigenvalues of Large Matrices 7

QR-shift with shift λ does the same, however, H − λI is never formed. This re-
duces errors due to subtracting a possibly small number from each diagonal ele-
ment and allowes an implementation of it with complexityO(m) by using Givens
rotations. The implementation of this is based on the ”tqli” algorithm in ”Numer-
ical Recipes in C”. This algorithm also computes V = V Q and δ required in up-
dating recidual. This increases the complexity of the implict QR-shift to O(mn).
The implementation of the implicit QR-shift is based on a QT

1 = P1,2 · · ·Pm,m−1 as
a product of Givens rotation, as such eTmQ1 = [0 . . . 0 δ1 ∗]. And the next shift will
give eTmQ1Q2 = [0 . . . 0 δ1δ2 ∗ ∗].

Using this one can reduce the form in equation (1) to

AV Q = V QQTHQ+ feTmQ,

where Q = Q1 · · ·Qp and the Qi matrices corresponds to the implicit QR-shifts.
This means if one sets V + = V Q, it will still have orthonormal columns, H+ =

QTHQ is still symmetric tridiagonal and eTmQ = [(δ1 · · · δp)eTk ∗ . . . ∗]. Thus setting

f+ = fδ1 · · · δp + βkvk+1,

gives
AV + = V +H+ + f+eTk ,

a Lanczos iteration of k steps with a new starting vector.

With the theory explained the description of the algorithm will continue. From
the starting form from step 1 and the eigenvalues from step 2, an implicit QR-
shift is done for each of the undesired eigenvalues, where for each shift V = V Q

and δi is computed. After the p implicit QR-shifts the new f is calculated and a k
step Lanczos iteration is achived.

After this the desired eigenvalues are still eigenvalues of H+.

Each shift has a complexity of O(mn) and a total of p is required. Finally calculat-
ing the new f has a complexity of O(n). Thus the total complexity is O(pmn).

3.4 Step 4: Expand basis
Let m be the total size of the Lanczos iteration used, k the number of eigenvalues,
p = m− k and n the size of A.

This step is the same as step 1, the only difference is that the iterations are not
startet at i = 1. The implementation is equal. After this step go to step 2.

As in step 1 iteration i requires i orthogonalizations with complexity ofO(in) and
a matrix vector product of complexity O(n2). Thus iterations i = k, . . . ,m has a
complexity of O(pn2 +m2n).

Finding the Largest Eigenvalues of Large Matrices 8

3.5 Possible shortcomings
If some of the largest eigenvalues are equal, the implementation will not be able
to detect all of them. This is because all components of eigenvectors correspond-
ing to the same eigenvalue will increase by the same factor. But the difference
required to detect close eigenvalues can be made small by setting the tolerance
to a low value. As an example consider the 1000 × 1000 identity matrix. At a tol-
erance of 1e-15 the implementation is only able to detect one of the eigenvalues,
but if one adds random values of order 1e-14 to the diagonal elements it is able
to detect multiple eigenvalues. ARPACK accomplishes the detection of multiple
eigenvalues of the identity matrix, so if it becomes important to detect extremely
close eigenvalues it should be possible to do so. An idea might be to allow the
Lanczos iteration to continue when f becomes small, but do more reorthogonal-
izations to ensure orthogonality, and stop only when it will underflow the double
values.

The full orthogonalization at each step of the Lanczos iteration might not al-
ways be necessary. Some articles seems to suggest a partial reorthogonalization
scheme, in which the degree of orthogonality is monitored by a simple recursion
relation, with the logic that semiorthoogonality to preserve the desired properties
of the iterations. This will not decrease the total number of matrix vector product
required, but might reduce the number of reorthogonalizations.

4 Tests of speed and accuracy

4.1 Summary
For this section let the size of A be n, the number of eigenvalues to calculate k
and the number of vectors used m. The tolerance will be called tol, TC will refer
to the time used by the implementation in C++ and TA refer to the time used by
ARPACK, both times will be measured in ms.

The test that follow will test the dependence of the time used on the size of the
matrix n, k when there is some fixed relationship between k and m and the dens-
ity of the eigenvalues. Here the density will be considered to be how large the ra-
tios between close eigenvalues are. To eigenvalues will be considered close when
the ratio between them is close to 1.

Finding the Largest Eigenvalues of Large Matrices 9

Table 1. TC and TA as a function of n, and the greatest relative error between eigenvalues
calculated by ARPACK and C++ implementation E for each n.

n TC TA E

215 90 70 6.7e-15
278 160 130 1.7e-14
359 290 260 1.3e-14
464 530 470 3.7e-14
599 940 870 4.1e-14
774 1900 1790 4.6e-14
1000 3750 3400 5.3e-14

4.2 Geometric progression with factor 1.0001
4.2.1 Dependency on the the size of the initial matrix
In this test the eigenvalues of the matrix A will be λi = 1.000110000−i. In other
words as the size of A icreases more eigenvalues are added from the progression.
The following parameters were used for the test

Parameter Value
k 3
m 29
tol 1e-15

Table 1 shows how TC and TA increases as n increases. A linear regression of
the logarithm of time and the logarithm of n gives a coefficient of 2.414 for this
implementation and 2.524 for ARPACK. Both of these are higher than the value
of 2.0 one would expect if the number of restarts were constant. Since the ratio
between succesive eigenvalues are kept constant one would perhaps expect this
to be the case, but a possible cause might be the fact that the ratio is quite small.

4.2.2 Dependency on the number of eigenvalues
In this test the eigenvalues of the 1000 × 1000 matrix A will be λi = 1.000110000−i.
This test will consider what happens when k is increased while the relationship
m = 2k + 23 is used. This more or less arbitrary chosen for this test. Parameters
used for the test

Parameter Value
n 1000
m 2k + 23

tol 1e-15

Table 2 shows how TC and TA depends on k under the relation m = 2k + 23. It is
not easy to draw any useful conclusion based on these data, however, one may

Finding the Largest Eigenvalues of Large Matrices 10

Table 2. TC and TA as a function of k, and the greatest relative error between eigenvalues
calculated by ARPACK and C++ implementation E for each k.

k TC TA E

2 3930 3600 5.7e-14
4 3480 3320 5.0e-14
8 3530 3010 3.0e-14
16 3520 3210 7.8e-14
32 4350 3620 7.0e-15

Table 3. TC and TA as a function of m, and the greatest relative error between eigenvalues
calculated by ARPACK and C++ implementation E for each m.

m TC TA E

40 3620 3420 5.1e-14
80 3370 3140 1.4e-14
160 5360 3350 2.0e-14
320 5480 2510 8.2e-16
640 25690 6320 4.9e-16

note that it appears to be faster to find 4 eigenvalues than 2 eigenvalues, this is
due to the arbitrary nature of the relation between k and m. Better choices of m
will give better times, but it is not easy to know what the proper choice is.

4.2.3 Dependency on the size of the iteration
In this test the eigenvalues of the 1000 × 1000 matrix A will be λi = 1.000110000−i.
This test will consider what happens whenm is increased while the k = 3 is used.
Parameters used for the test

Parameter Value
n 1000
k 3
tol 1e-15

From table 3 one can see that there are some values of m that are better than oth-
ers. However for values not far from the optimal value the difference in time is
not large, but for very bad choices there may be significant difference. Further
one can see that ARPACK has a much better time for large values of m. The in-
teresting values here are all except the last one, a value of m that large would be
larger than the one required to converge with only one Lanczos iteration. One
can see that ARPACK has a time usage that does not appear to depend to much
upon m unless it is chosen extremely large, or too small for convergence. This
implemenation seems to possess stages at which it keeps a nearly constant value

Finding the Largest Eigenvalues of Large Matrices 11

Table 4. TC and TA as a function of n, and the greatest relative error between eigenvalues
calculated by ARPACK and C++ implementation E for each n.

n TC TA E

215 30 20 4.7e-15
278 50 30 5.2e-15
359 70 60 3.7e-15
464 120 110 4.1e-15
599 170 170 2.7e-15
774 290 300 4.5e-15
1000 500 490 2.4e-15

and large increases. This could indicate inefficient access to the stored arrays and
that the parts of the algorithm with cubic dependency on m grows too large. An-
other possible cause could be that the cost of the full reorthogonalization grows
very large.

4.3 Geometric progression with factor 1.05
4.3.1 Dependency on the size of the inititial matrix
In this test the eigenvalues of the matrix A will be λi = 1.051000−i. In other words
as the size of A icreases more eigenvalues are added from the progression. The
following parameters were used for the test

Parameter Value
k 3
m 15
tol 1e-15

Table 4 shows how TC and TA depens on n in this example. A linear regression
on the logarithm on n and the logarithm of the time gives a coefficient of 1.791
for C++ implementation and a coefficient of 2.126 for ARPACK. These values
are around the value 2 which one would expect as the ratio between succesive
eigenvalues is kept constant.

4.3.2 Dependency on the number of eigenvalues
In this test the eigenvalues of the 1000 × 1000 matrix A will be λi = 1.051000−i.
This test will consider what happens when k is increased while the relationship
m = 2k + 9 is used. Parameters used for the test

Parameter Value
n 1000
m 2k + 9

tol 1e-15

Finding the Largest Eigenvalues of Large Matrices 12

Table 5. TC and TA as a function of k, and the greatest relative error between eigenvalues
calculated by ARPACK and C++ implementation E for each k.

k TC TA E

2 530 530 3.6e-15
4 530 460 3.7e-15
8 510 520 3.5e-15
16 650 610 3.0e-15
32 940 850 1.7e-15
64 1390 1380 6.6e-15
128 3860 2880 1.2e-13

Table 6. TC and TA as a function of m, and the greatest relative error between eigenvalues
calculated by ARPACK and C++ implementation E for each m.

m TC TA E

20 600 480 6.3e-15
40 570 520 1.2e-15
80 680 560 1.1e-15
160 1740 1140 1.1e-15
320 5470 2540 2.7e-15
640 27740 6650 3.0e-15

From table 5 one can see the same development as in the the previous section.
ARPACK is more efficient than this implementation when the number of vectors
to create increase. This is the same behavior experienced in the previous subsec-
tion.

4.3.3 Dependency on the size of the iteration
In this test the eigenvalues of the 1000 × 1000 matrix A will be λi = 1.051000−i.
This test will consider what happens whenm is increased while the k = 3 is used.
Parameters used for the test

Parameter Value
n 1000
k 3
tol 1e-15

Table 6 shows how the time used depends on the number of vectors used m for
k = 3 eigenvalues. As in the previous subsection the difference from the time
used by ARPACK becomes larger as m increases. This behavoir is the same as
experienced in the previous subsection.

Finding the Largest Eigenvalues of Large Matrices 13

4.4 Larger matrices
The reason why the matrices has been kept to a maximum size of 1000 is that it
becomes much more time consuming to construct matrices with a desired set of
eigenvalues when the size becomes big. Therefore some test will be done here
with matrices where not all eigenvalues are known.

LetA be a 10000×10000 matrix generated by the rand() function in C++ with 1000
added to one of the diagonal elements. The reason why 1000 is added is because
then the matrix will then have two eigenvalues around 1000 and the rest clustered
around 0 with magnitude less than 10. With k = 2 and m = 5 this gives TC = 9170

and TA = 11120. However, withm = 40 one gets TC = 26580 and TA = 27520. This
indicates that the choice of m can be quite important with respect to time used.

For this example let A be as in the previous paragraph, if an accuracy of the order
of 10−15 is not required, the use of a higher tolerance can decrease the used time.
With a tolerance of 1e-5 and m = 5 the times used are TC = 5240 and TA = 5890.

4.5 Conclusions
The tests show that the precision of this implementation is on the level of the
precision of ARPACK. Further that for small m the time used is close to the time
used by ARPACK, however, as m increases the deviation in time increases. This
indicates that the parts of the algorithm which are of complexityO(m3) should be
given closer consideration. This is mainly the algorithm for finding eigenvalues
and eigenvectors of the tridiagonal matrix. Finding all the eigenvectors seems
might be unecessary and it would be desirable to calculate the eigenvalues in
O(m2) floating point operation and measure error in another way. Further the
full reorthogonalization requires O(m2n) floating point operations and a partial
reorthogonalization could decrease the number of full orthogonalization done.

5 Brief tests on proposed use

5.1 Euclidean case
LetD = [dij] be a distance matrix and construct half-squared distancesA = [−d2ij

2
].

Then from this construct a centred matrix B = [aij − āi. − ā.j + ā..], and find the
two eigenpairs with largest eigenvalues.

Using only the Manhattan distance on 21 × 21 uniform grid, that is only four
possible direction to move at each node, one gets the eigenvalues

Finding the Largest Eigenvalues of Large Matrices 14

73.69
73.69
-20.04
10.80
6.69

Using the eigenvectors of the two largest eigenvalues suitably scaled gives a max-
imum distance of 2 and a maximum deviation from true distance and Euclidean
distance of 0.481.

By also movement to closest diagonal neighbour, that is also allowing 8 different
directions to move at each node, one gets the eigenvalues

44.40
44.40
2.32
-1.96
-1.59

Using the eigenvectors corresponding to the largest eigenvalue suitably scaled
gives a maximum distance of 1.414 and maximum deviation between true dis-
tance and Euclidean distance in the new coordinates of 0.0716.

Further if one uses the true Euclidean distances and solves for eigenvalues one
gets the eigenvalues

40.43
40.43
7.6e-14
-2.3e-14
7.2e-15

This gives more or less the exactly the correct distances with an error of only
2e-15, but in new coordinates.

It is interesting to note that refining the grid does not improve the situation, using
instead a grid size of 41×41 on the case where one can move to the 8 closest nodes
gives the eigenvalues

162.4
162.4
8.382
-7.167
-5.840

This gives a maximum distance of 1.414 and a maximum deviation from true
distances from new Euclidean coordinates of 0.07535.

Finding the Largest Eigenvalues of Large Matrices 15

This shows that a scheme which allows only movement in certain directions at
each step cannot improve the distance measurement. To improve this it is neces-
sary to increase the number of angles at which one can move.

5.2 Rotating azimuth field
This subsection will use the field θ(i, j) = (xi − yj)π and the distance measure

d(zi, zj) =
√

(zi − zj)TK(zi − zj)

with

K =
1

R2S2

[
R2 cos2 θ + S2 sin2 θ (S2 −R2) cos θ sin θ

(S2 −R2) cos θ sin θ R2 sin2 θ + S2 cos2 θ

]

The following values will be used, R = 1 and S = 1
2
.

The same 21×21 grid as in the previous subsection, but with the distance measure
above for the eight closest points, gives the eigenvalues

84.46
81.52
13.11
-7.84
-5.41

The 41 × 41 grid from the previous subsection, with the distance measure above
gives the eigenvalues

307.32
296.59
47.72
-28.66
-19.97

Comparing this to the results in the Euclidean case, one sees the same effects.
For the 21 × 21 grid the Euclidean case has a ratio between the third and second
eigenvalue of 0.052 and the rotating field case has a ratio of 0.16. For the 41 × 41

grid the Euclidean case has ratio between the third and the second eigenvalue of
0.057 and the rotating field case has a ratio of 0.16. The rotating azimuth field is
not a two dimensional Euclidean space, but all the five largest eigenvalues seems
to maintain the same relationship as the grid is refined. Further the error seems
to be of the same order as the error made in the Euclidean case.

Finding the Largest Eigenvalues of Large Matrices 16

6 Closing remarks

The code produced from this project works and finds eigenvalues at a high accur-
acy in the cases tested, but there is room for improvement of efficiency. However,
more tests are required to ensure that it works for a variety of cases.

Finding the Largest Eigenvalues of Large Matrices 17

	Contents
	Introduction
	Background on IRLI
	Implementation of IRLI
	Step 1: Initial Lanczos iteration
	Step 2: Calculate eigenvalues and find error bounds
	Step 3: Shifting unwanted eigenvalues
	Step 4: Expand basis
	Possible shortcomings

	Tests of speed and accuracy
	Summary
	Geometric progression with factor 1.0001
	Dependency on the the size of the initial matrix
	Dependency on the number of eigenvalues
	Dependency on the size of the iteration

	Geometric progression with factor 1.05
	Dependency on the size of the inititial matrix
	Dependency on the number of eigenvalues
	Dependency on the size of the iteration

	Larger matrices
	Conclusions

	Brief tests on proposed use
	Euclidean case
	Rotating azimuth field

	Closing remarks

