
1

An Open-EDI prototype based on UML,
CORBA and Java

Lesson learned

Presented at ISO/IEC SC32 WG1 Ottawa
22. September 1998

Per Myrseth
per@nr.no

Norwegian Computer Center
www.nr.no

Slide 2
Norsk Regnesentral

Norwegian Computing Center

Target: Formal specification and
automatic system generation

An old idea within system developement, but so far
successful only under very limited circumstances.

How we tried to reach our target
z Used ”state-of-the-art” FDT toolkit. Rational Rose and

UML notation
z Used ”state-of-the-art” technology, Corba and Java for

implementation

Slide 3
Norsk Regnesentral

Norwegian Computing Center

Model in UML

Subscription

Role
(from open-edi)

S_NetOwner 1

NetOwner

N_Subscriptions *

10..1
Subscription_N

changeCustomer()

1

*

/N_Subscription

S_Customer1

Customer

C_Subscriptions0..1

Subscription_C

meterReading()
confirmSubscription()

10..1

/Subscription

1

0..1

/C_Subscription

customer :
Customer

NR : Net
OwnerRegistry

NR : Net
OwnerRegistry

subscription_n :
Subscription_N

subscription_c :
Subscription_C

newSubscription (subscription_c)

confirmSubscription (subscription_n)

Role (in string)

Role (in string)

bind (subscription_n, role_id)

locateNetOwner (in Address)

Message sequence diagramObjectmodel
(+State diagram)

FSV BOV

Slide 4
Norsk Regnesentral

Norwegian Computing Center

From model to usable code
UML model

Class
diagrams

Message
sequence
diagrams

Open
EDI
framework

Scenario
generation

CORBA
interface
definitions

Java code
generation

ORB
interfacing
code

State
diagrams

Object
interfaces

Scenario
skeleton

Scenario
drivers &
utilities

IDL code
generation

Client-
specific
code

Specific
operations,
interfacing,
etc.

Slide 5
Norsk Regnesentral

Norwegian Computing Center

The structure in a CORBA/Java-
application

OrbixWeb ORB

Stubs Holders/helpers Object adapter

Server skeleton

Client code Server code

User-written code Generated code Built-in code

Slide 6
Norsk Regnesentral

Norwegian Computing Center

Modeling Open-EDI scenarios with
Rational Rose and using UML notation

Some findings:
z Rational Rose is primarily designed for use in software

development projects, not to model BOV.
z Several objects could act in concert to implement a

single role.
z All actions must take place in concrete objects, where

each is always executed on a specified host computer
and under the control/responsibility, and on behalf of
precisely one real-world actor.

Slide 7
Norsk Regnesentral

Norwegian Computing Center

FDT’s for asyncronous versus
syncronous system integration

Having in mind that an EDI message counterpart within
distributed object systems is the method call.

At what time do we have to choose asyncronous versus
syncronous integration?

¶ Reference model level (Open-EDI, eCo, Zackman)
· FTD level
¸ Design level
¹ SW implementation tool

Slide 8
Norsk Regnesentral

Norwegian Computing Center

Message modeling versus state modeling

Difference between:
zMessage modeling
z State modelling of agents/programs to act upon data in

objects

z Type of error handling
z Security issues
ySignature on messages versus callable objects
yEncryption on messages versus restricted access to objects

Slide 9
Norsk Regnesentral

Norwegian Computing Center

”Information exchange” in a distributed
object model, 1

Use reference to objects
z Count on partner’s systems to be available at all time
z Use version handling on objects

Slide 10
Norsk Regnesentral

Norwegian Computing Center

”Information exchange” in a distributed
object model, 2

Copied or cloned
zWhat about the methods, they are not platform

independent and can’t be copied?
z Could all involved actors use the same method libraries?
zWhat about deep versus shallow copying?
z Java: Coping objects by value, data, state and methods

The idea of an object is that it should be viewed as a whole
in the context it belongs. Copy by value is not in line with
this idea.

Slide 11
Norsk Regnesentral

Norwegian Computing Center

Points of interest for evaluating FDT’s and
variations of implementations

In a ”live” business transaction:
zWhere/what is the scenario state?
zWhat/where are the scenario attributes?
z How is a scenario initiated?
zWhen does a role die?
yEnd of scenario
yEnd of business relation with partner

z Error handling? Where is it modeled?
z Security issues? Where is it modeled?
yDigital signatures, encryption, access controll

Slide 12
Norsk Regnesentral

Norwegian Computing Center

What to do versus how to do it

Compiled
Software

Reference
models

OeDT

How to do it

UML

Library’s

Framework’s
FSV
FDT

Abstract

What to do

Concrete

Slide 13
Norsk Regnesentral

Norwegian Computing Center

Comments

To have automatic code generation I believe that:

zA FDT’s expression power has to be equal to the
expression power to the target abstration level

zOpen-edi reference model serves as a good
vocabulary for a very complex field, made up by
simple parts

zUML descriptions is interchangable by using
XMI, XML Metadata Interchange.

