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SUMMARY .This paper describes a model for conditioning a fluvial reservoir on stacked
seismic amplitudes. Synthetic seismic amplitudes are generated from the reservoir model
by convolving reflections, and the likelihood for the reservoir with respect to the seismic
is computed from the difference between real and synthetic traces. Promising results are
achieved in synthetic cases. The improvement was smaller when conditioning to a real
data set with smaller amplitude contrasts.

1. INTRODUCTION

Seismic data are becoming increasingly important in conditioning of petroleum reser-
voirs. An object-based model for simulating fluvial reservoirs conditioned on inverted
seismic data, such as impedances, is described in [4] and [3]. The model described here
is different in the seismic conditioning since it uses stacked seismic amplitudes which are
pre-inversion data. Conditioning on seismic amplitudes makes it easier to get the correct
interaction between objects in the seismic pattern. This is due to a larger support volume,
as entire seismic traces are considered. In addition, this model can be seen as a kind of
seismic inversion conditioned to facies geometries, where the stochastic aspect preserves
the non-uniqueness of inversion.

The basic idea is to compare the seismic amplitudes with synthetic amplitudes gen-
erated from the simulated reservoir. A good match here will indicate good correspondence
between the true and the simulated reservoir. The idea is described in both [1] and [2].

The geometry of the problem may reduce the effect of the assumptions made to
generate the synthetic seismic. Since channels are large objects which intersects many
traces, small effects add up over large volumes to influence the location of channels.

2. MODEL AND ALGORITHM

The model used here is an object based model for simulating facies in fluvial reser-
voirs, where the objects are channel sands, placed on a background of shale. The model
for a reservoir r given the seismic s, well contacts w and volume constraints v, is given as

m(r|s,w,v) = cfu(r)fs(s|r) f1(r) fw (r)I(r|w,~),

where ¢ is an unknown normalising constant. The channel geometry is described by
fr(r), the seismic conditioning by fs(s|r), the interaction between different channels by
fr(r), the well contacts by fu (r), and the well and volume constraints by I(r|w, ). The
constraint function I(r|w,) is zero or one, fy, fs, fr and fy are probability densities.



Stacked seismic amplitudes are used as input data for the seismic conditioning. These
are pre-inversion data, representing an approximation of a vertical seismic shot.
Three assumptions are fundamental for the seismic conditioning in this model:

1. The seismic amplitudes can be represented as a convolution of reflections from a
vertical trace.

2. The velocity along a trace is constant within the modelled reservoir zone, but may
vary between traces. This velocity is only used for time/depth conversion, and is
uncorrelated with the impedances.

3. The transition between different facies objects has constant reflection.

These assumptions are used to create synthetic seismic amplitudes. A reflection
occurs at locations where the impedance changes, and is given as

_ L1 = Zk
Zgy1 + Zy,

where Ry is the reflection at time step k£, and Z; is the impedance. The synthetic seismic
amplitude s*¥" is then generated as the convolution of R with a wavelet w,
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where [ is the length (in time steps). The generation of synthetic seismic is shown in
Figure 1.

It is a common assumption in most inversion methods that the seismic signal can be
represented as convoluted reflections, so this is similar to existing approaches. Further-
more, no serious errors are introduced by the second assumption. Shale has usually higher
velocities than sand, so the thickness distribution for channels is slightly disturbed, but
the effect is small. This effect is hard to overcome, as a facies-dependent velocity would
change the time-depth relationship every time an object was added or removed. General
trends in the time-depth relationship could be included; the essential model assumption
here is that the time-depth conversion is independent of the realization.
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FIGURE 1. The plot shows the impedance along a trace (left), the corre-
sponding reflections (middle), and the synthetic seismic (right).



The third assumption is more critical. Reflections are generated by differences in
impedance. Impedance variations inside objects account for much of what is seen in
the seismic amplitudes. However, the largest impedance changes corresponds to facies
changes, so although some information is lost, the most important information in the
seismic data is still utilized. Note that constant reflections can be obtained when there
are corresponding spatial trends in the facies objects.

The relationship between real and synthetic seismic amplitudes is given as

s=35" +¢

where s are the observed amplitudes, and € is a noise term. The last term includes all
kinds of noise, from noise in the signal and interpretation, to parts of the signal which
contain information that is not utilized in this model.

In order to get a valid model here, a distribution is needed for e. A common assump-
tion in inversion is that this term is Gaussian. This gives

fisr) = exp {—%(s — &) (s — ssy")}

where ¥ is the covariance matrix for the noise term. However, this matrix is very hard to
estimate, so the actual term used in the model is

fs(s|r) =exp {—2%:2 Z(SZ _ sfy”)Z}
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where o is the variance of € and a is a scaling factor between 0 and 1.

If the scaling factor was not included, this would be equivalent to assuming uncor-
related noise, which is a very poor assumption here. The scaling factor can be set to give
noise with the correct range the correct likelihood. Residuals with shorter range would
get too high likelihood, whereas long range residuals would get too low. The first is not
a serious problem; as the channels are long-range, going through the entire reservoir, the
shortest possible range for the residuals is the range of the noise.

A Metropolis-Hastings algorithm is used to simulate from the model. The initial state
is an empty reservoir, and each iteration either adds, changes or removes one channel belt.

In order to quicken convergence in the seismic term, it is used actively in the channel
generating algorithm. As the seismic pattern is given by interference between amplitudes
from different objects, it is hard to locate channel directly from this. However, areas with
large residuals may indicate a lack of channels there. Therefore, such areas are identified,
and channel belts are proposed more often there.

In addition, the impedance of a channel is drawn from a distribution which depends
on how good that impedance would explain the residual in a randomly drawn trace in the
area the channel passes through.

3. RESULTS

A true reservoir was generated with channel geometries large enough to be detectable
for the seismic. Impedances were generated as continuous fields, with expectation value
6900 for the channels, and 7100 for the background. The standard deviation for both
fields was 200, and the horizontal range was half the reservoir length. Vertically, a very
short range was used. Computing the reflections, and convoluting them gave the true
seismic amplitudes used.



Note that this seismic generating does not follow the assumption of constant impedance
inside a channel, or in the background. It allows the background to have lower impedance
than the channels in some areas, although on the average, the channel impedance is lower.
In the model used here, this impedance variation can be seen as noise. Under the model
assumptions, about 50% of the variance in the true seismic amplitudes could be regarded
as noise, as it came from internal reflections inside a facies object.

Normal to expected channel direction. Horizontal cuts

Original reservoir

Original impedance

6600
8740
6880
020
7160

7300

Simulated
impedance

Net/gross cube

FIGURE 2. Vertical (left column) and horizontal (right column) intersec-
tions in the middle of the reservoir. From top to bottom: Facies in original
reservoir, the generated original impedance field, the simulated impedance
field in one realization and the mean net/gross cube from 10 simulations.

A series of 10 realizations was then simulated conditioned on the generated seismic
amplitudes. Cuts through the true and the first simulated reservoir are shown in Figure 2



together with average facies maps of the 10 simulations. The corresponding original,
simulated and residual seismic amplitudes for the first simulation are shown in Figure 3.
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FIGURE 3. Amplitudes in a vertical cut through the middle of the reservoir
normal to the expected channel direction.

The original impedance field does not give exact information about the channel
location, and with the model having one impedance value for one channel object, it is not
possible to reproduce a realistic impedance field. However, the average maps show that
the channels are basically placed in the correct regions of the reservoir.

The residual amplitudes have less structure than both the original and the simulated
amplitude field. This means that the main features of the original reservoir are contained
in the simulated one. It is natural that the residual amplitudes have short horizontal
range, as this occurs when a channels in the realization are located close to channels in
the true reservoir. In all realizations, 50% of the variance was explained, which shows
that the same amount of seismic information was used.

This conditioning has also been applied on a real data set. This data set was a
poorer fit to the assumptions, mainly on three counts:

e The average impedance difference between channel and background was small, giving
small reflections, sometimes with opposite signs.

e The modelled area consisted of several zones, to get a thicker volume for condition-
ing. However, this also gave significant variations in channel geometry, which the
geometric model could not handle properly.

e There were trends in the variance distribution, which does not correspond to the
assumption of a uniform noise variance.

Due to these phenomena, the percentage of variance that was explained by the synthetic
seismic was down to 16%. Although this is only a third of what was achieved in the
synthetic case, it still represents a significant reduction of the state space. Again, all
realizations had the same variance in the noise, indicating convergence with respect to
the seismic term, and that all seismic information that could be utilized in this model was
utilized.



When the difference in impedance between channel and background is small, the
uncertainty will increase, as the information content in the input data is smaller. This is
a problem for all seismic conditioning models. The two other problems could be overcome
by extending this model — making the channel geometry more flexible, and assuming
that the noise is a given percentage of the variance locally would probably improve the
conditioning.

4. CONCLUSION

The method showed promising results in the synthetic case, reproducing the original
seismic amplitudes to the desired degree, and giving realizations with clear similarities to
the original reservoir.

Although the performance on a real data set was much poorer, the conditioning still
worked, even though the impedance contrast between facies was small, and the fit to
model assumptions was bad.
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