Integrating a Security Requirement Language
with UML

H. Abie!, D. B. Aredo’, T. Kristoffersen!, S. Mazaher! and T. Raguin?

! Norwegian Computing Center
P. O. Box 114 Blindern, N-0314 Oslo, Norway
2 NetUnion sarl, Avenue de Villamont,
19-1005 Lausanne, Switzerland

Abstract. We present an approach that integrates a language for pre-
cise and high-level specification of application security requirements, the
Security Requirement Language (SRL), with an existing modeling tech-
nique, namely, the Unified Modeling Language (UML). SRL is based
on first-order logic extended with a small set of modal operators and
a syntactic abstraction mechanism. It offers extensibility in that new
application/domain-specific requirements can be defined and reused. The
focus of SRL is the security of communication in distributed systems. The
integrated framework enables developers to add to system models secu-
rity requirements, such as confidentiality, non-repudiation, and authenti-
cation, at an early stage of development, making security an integral part
of the system development process. We illustrate the practical usability
of our approach by presenting an example, and discuss the experiences
that the users of our approach, i.e., system developers, have reported.

1 Introduction

E-work systems, be it for commerce, government, learning, etc., have made their
way into our everyday lives, and therefore, we are more vulnerable to the mal-
functioning of these systems than ever before. One of the important aspects
common to all these systems is that they are security-critical. Security attacks
against, e.g., e-commerce systems, have already caused huge financial damage,
and much confidential information has been compromised.

One of the major reasons behind the failure of many critical systems is that
security mechanisms are added to them as afterthoughts and not integrated into
them in the early phases of the development process. Moreover, it is seldom
checked, if at all, whether the security mechanisms used indeed satisfy the secu-
rity requirements of the systems. It is necessary to capture security requirements
at an early stage and integrate the requirements into system specification and
propagate them further to the design and implementation phases. Lastly, secu-
rity analysis methodologies must be used to ensure that the provided security
mechanisms satisfy the specified security requirements.

This paper presents the results of our work in the EU IST project CASENET
[6], whose overall objective was to develop and implement a tool-supported inte-
grated framework and methodology for the formal and systematic specification

of security requirements, modeling and analysis of security protocols, and imple-
mentation of security-critical e-work systems. The focus of the work described
is the specification of security requirements based on formal methods and its in-
tegration with the Unified Modeling Language (UML) [16]. UML is widely used
by the software community for modeling software applications. UML is effective
in modeling systems, and its graphical notation is intuitive to users. In contrast,
formal methods are not so user-friendly but offer a well-defined semantics that
enables them to precisely capture security requirements, thus paving the way
for formal verification. Systematic integration of mathematically-based method-
ologies with semi-formal analysis and design techniques into a single develop-
ment framework bridges the gap between the practical application of security
requirements engineering and the formal methods used in design and analysis of
security protocols. Such an integration is shown to be an efficient approach to
formal development of critical systems as it pulls together the strengths of the
mathematical foundation of formal methods and the user friendliness of UML
and exploits their synergy effect [18].

To specify security requirements in a precise way, we have designed the Se-
curity Requirement Language (SRL) [2] based on first-order logic. There have
been several goals guiding the design of SRL:

— When dealing with security requirements, our concern is to capture just the
what - specification of the requirements - and not the how - mechanism for
realization of the requirements.

— Security requirements specifications must be useful in the development of
security critical systems, i.e., it must be possible to translate/refine the spec-
ified requirements automatically to input used in the formal design/analysis
of security protocols. This makes it possible to show that the system indeed
provides the specified requirements.

— Most users involved in specifying system requirements and functionalities are
not familiar with mathematical notations and concepts underlying formal
specification languages, and hence are reluctant to use them. A third goal is
therefore to be able to specify security requirements in a way that is clear
and easy to understand for end-users.

The first two goals have been addressed by the formal nature of SRL. First-
order logic both allows the precise specification of the what and lends itself to
an automated translation/refinement for use in the formal design/analysis of
security protocols, i.e., the how. That is, requirements can be translated into
goals/constraints to be satisfied in the formal design/analysis of security proto-
cols. We have addressed the third goal by providing abstraction mechanisms that
hide the mathematical complexity of the specification behind concepts familiar
to the end-users, and by providing a methodology to integrate the language with
UML.

The rest of the paper is organized as follows. In Sect. 2, we briefly introduce
SRL. Section 3 discusses our methodology for integrating SRL with UML. In
Sect. 4, we present an example from a real world problem - a Document Approval

Workflow for Public Administration, to illustrate the practical usability of our
approach. In Sect. 5, other related approaches are discussed. Section 6 gives a
summary of the work described and discusses future work.

2 The Security Requirement Language (SRL)

SRL is based on first-order logic extended with a small set of relations and modal
operators. Its focus has so far been on security of communication in distributed
systems. For a detailed description of the language the reader is referred to [2].

From the point of view of the specification, at any given time, the world
consists of a set of objects, each object being an entity of a type, such as principal
(people, computers, systems) or message. Some objects are constant and have a
fixed value, while objects of type variable may change value over time.

SRL’s primitives are comprised of:

a set of logical connectives, such as the usual propositional connectives in
first-order logic A, V, -, and —, logic quantifiers V and 3, and equality
operators = and #.

the relations Writes(P, m) and Reads(P,m), to convey the sending and the
receiving of messages m by principal P, respectively.

the functions Binding(P, X) that returns the value of X in the context of
principal P (if P does not know the value of X it returns the null object,
€), and Values(X) that returns the set of values that it is possible for an
object X to be bound to.

the modal operators believes and can_prove. Intuitively, P believes s means
that P believes that s is true, and P can_prove s means that P believes that
s is true and is able to prove s, i.e., it has a proof of the truth of s, denoted
proof(s), that it can present whenever necessary.

a macro facility that allows for the definition of a shorthand for a formula,
namely, a macro. A macro has a name and a body, and it may take typed pa-
rameters. In this way, mathematical formulae can be hidden behind concepts
familiar to users.

the epoch construct that allows for the definition of a period of time during
which given security requirements apply to the interactions that take place
during the defined period. The related within construct is used to specify
the interactions that may occur during the epoch.

the sequence construct that allows for the modeling of the application in terms
of its interactions.

a concept of time that allows to express a particular point in time in which a
particular relation holds. For example, if P reads a message, m, at time ¢,
we write Reads;, (P, m). This makes it possible to place temporal constraints
on relations.

The Macro Facility. The following example clarifies the concept of macro:

MessageAuthentication(A : principal, B : principal, m : message) =
Reads;, (B, m) — B believes (Writes;, (4, m))) A t; < to

introduces a macro by the name of MessageAuthentication, taking three param-
eters: the first two being principals and the last one a message. It expresses
the requirement that m be authenticated for principal B. In other words, when
receiving m, B knows it comes from A.

Macros are expanded by replacing their formal parameters with the given
arguments. For example, the macro,

MessageAuthentication(Manager, Employee, Call F or M eeting)
expands to

Reads,, (Employee, Call For Meeting) —
Employee believes (Writes;, (Manager, CallFor Meeting))) At < to

where CallFor Meeting is the message sent (an object in SRL).

A library of macros, called the standard library, is included in SRL. This
library contains, among others, macros corresponding to common security re-
quirements such as confidentiality, message authentication, non-repudiation, etc.
Note that users can define their own macros, customized to their needs, and put
them in a library, which can then be used in addition to or instead of the standard
library. Libraries also facilitate reuse of requirements.

The Epoch Construct. An epoch is a period of time during which a given
security requirement is in effect. It has associated with it an establishment phase
and a termination phase that define the sequences of actions that establish and
terminate the epoch, respectively. These phases delimit the duration of the epoch
but are not part of the epoch themselves. The security requirement that is associ-
ated with an epoch applies to all interactions occurring during the corresponding
period of time.

The interactions that may occur during a given epoch are specified using
SRL’s within construct which refers to the relevant epoch by its name.

The Sequence Construct. All the SRL primitives presented so far have to
do with the specification of security requirements. The context of the security
requirements is the application and especially the interactions to which they
apply. To model the application, SRL provides the sequence construct that allows
to group together related interactions of the application in a temporal order. A
sequence can have a name and can be marked, using within, to take place within
a given epoch.

3 The Integration Methodology

3.1 Design Decisions

To integrate SRL with UML, we identified constructs and concepts in the two
worlds that best fit together and based the integration methodology on those.

Security requirements expressed in SRL are requirements on the interactions
between the different entities in a system, and the sequence construct is used
to model those interactions. Among the different types of UML diagrams, it is
the sequence diagram that depicts these interactions and their temporal order
explicitly; it is therefore the most appropriate type of diagram, with respect to
SRL, for specifying security requirements.

On the SRL side, it is the macro facility that provides end-users with familiar
terminology, which hides the mathematical formulae. To specify a requirement,
the user only needs to know the name of the corresponding macro and its pa-
rameters; the body of the macro is of no concern to him. The arguments passed
to the macro are taken from the context of the requirement, which is the ap-
plication whose security requirements are being specified. The arguments will
therefore be entities taken from the UML model of the application. Our integra-
tion methodology is therefore primarily based on combining SRL macros with
UML sequence diagrams.

UML does not directly offer any constructs for the specification of security
requirements, but it offers extension mechanisms that enable addition of new
kinds of modeling elements. We wanted a flexible and uniform way to attach
security-related properties, from requirements (by means of macros) to epoch
definitions, to some of the elements of UML. The Tagged- Value extension mech-
anism was selected because of the flexibility it offers, especially for the values
of the tags. In brief, SRL macros representing different security requirements,
and other security-related information are attached to different elements of UML
using the UML Tagged- Value mechanism.

Definition of epochs with their related within constructs, names for the se-
quence diagrams, definition of new macros, and security related assumptions,
such as trust, comprise the other information that may be necessary when
specifying the security requirements of a system. A special tag by the name
CASENET is used for the purpose of supplying security information. Depend-
ing on their nature, the different types of information must be conveyed by tags
on different elements of a UML model.

3.2 Applying the Methodology

Figure 1 illustrates the integration framework. In SRL security requirements

UML Model SRL

Integration Security—enhanced Input to formal
SRL-tool security design
UML model

or analysis

methodology

Fig. 1. The Integration Framework

apply to the interactions of a system. In UML, the corresponding parameterized
macros are assigned to the CASENET tags of the appropriate interactions in
sequence diagrams. That is, if an interaction in a sequence diagram has the
requirement of message authentication, a CASENET tag whose value is the
corresponding macro is used for that interaction. Note that the parameters of
the SRL’s Message_Authentication macro are replaced with values from the
context of the macro, i.e., the corresponding interaction. Figure 2 illustrates the
use of SRL macros in UML sequence diagrams where the comment box visualizes
the value of the CASENET tag, and the dashed line indicates to which element
it is attached (the tags themselves do not have a graphical notation). As for the

D 1: deposit(account?, amo“”—t);H o 4 require: Confidentiality({ account#, amount}); %

Message Authentication

Fig. 2. Use of SRL Macros in UML

other types of information mentioned above, some apply to a sequence diagram
as a whole, such as a name for a sequence diagram or the within construct, or
to the system as a whole, such as the definition of an epoch or that of a new
macro.

The natural place for the sequence diagram-related and the system-related
information is the sequence diagram and the system model (within which all the
diagrams are contained), respectively. But tagged-values are neither supported
for UML sequence diagrams nor for the system model. We therefore had to
make some compromises and these types of information were attached to other
elements than where they belong.

For sequence diagram-related information, the use of the corresponding col-
laboration was considered; but, since the corresponding collaboration may contain
several sequence diagrams, the information pertaining to a specific sequence dia-
gram cannot therefore be used as the tag value for the collaboration. A completely
different option was to use UML comment boxes instead of the Tagged-Value
mechanism, but UML comments are not always carried through to the output
generated by the UML tools, such as .xmi files. We therefore have opted for a
less than elegant solution, i.e., to attach the information to one of the object
elements of a sequence diagram.

Similarly, the system-related information is attached to one of the object
elements of a sequence diagram. The rationale behind this choice was to make it
easier for end-users by limiting the number of places for tags. Since that kind of
information cannot be placed in its natural place, we chose to gather all types of
security-related properties in one place such that the end-user can concentrate
only on sequences diagrams. Figure 3 illustrates how a sequence diagram-related

global: M
name: deposit

D 1: deposit(account#, amount)‘ﬂ

Fig. 3. An Example of Defining Sequence-related Information in UML

information is specified in UML. Some of these problems, namely, the naming of
sequence diagrams, will be solved by the upcoming UML2.0 [17] specification,
but this is only one of the types of information needed at the sequence diagram
level. We believe that UML should support tags at the diagram and model levels,
as illustrated by our work on SRL.

SRL is extensible in that, in addition to the predefined macros, new macros
can always be defined for requirements specific to a system, as part of the
specification of the system in SRL. To define new macros, a deeper knowledge
of the language is required. But, once defined and tested, the macros can be
reused thereafter. This extensibility is conveyed through the described integra-
tion methodology to the UML model. That is, new macro definitions can be
tag-values and be used as requirements wherever needed.

Note that all requirements in comment boxes are valid SRL statements. A
detailed syntax for the possible values of the CASENET tag is defined and can
be found in [5].

3.3 Tool Support

The integration methodology described in the previous section, is supported by
the SRL-tool. The input to the tool is the .xmi file generated by a UML tool from
an application’s model augmented with security requirements by means of tags.
So far, our tool only supports the .xmi files generated by the PoseidonCE1.6.1
tool 2. Figure 4 shows the SRL-tool, consisting of two components, and its input
and output. Both components of the tool are implemented in Java. The front-end
component uses an XML parser to extract the necessary information about both
the sequence diagrams and the security requirements to generate a specification
in SRL. The SRL file is input to the back-end of the tool, basically a compiler,
to generate input for a given formal security design/analysis methodology. The
code-generation part of the compiler must be rewritten for each new target
formalism.

The SRL specification can set the constraints for the formal design or selec-
tion of appropriate security protocols for the application, or it can serve as the
basis for specifying the goals of formal security protocol analysis methodologies.

3 PoseidonCE1.6.1 is a product from Gentleware: http://www.gentleware.com

That is, SRL specifications can be translated to formal notations used in design
or analysis processes of the security protocols. In the context of our work, the
back-end of the SRL-tool translates SRL specifications to a notation used by
the formal design methodology used in CASENET. Consequently, the process

SRL-tool

SRL-tool front-end

R * ,,,,,,,, ‘ Input to formal
» | Specificationin! —{ security design
SRL or analysis

SRL-tool back-end

Security—enhanced
UML model

Fig. 4. The SRL-tool

from using SRL in connection with UML for the specification of the security
requirements of an application, to generating input for a formal design/analysis
process is supported by tools. This makes it possible to ensure that the security
requirements are indeed satisfied by the implementation of the system.

4 Case Study: a Document Approval Workflow

4.1 Description of the System

As a proof of concept, our methodology has been applied to parts of the applica-
tions of the user-partners of the CASENET consortium. This section reports on
one such trial where the example used is taken from a case study that NetUnion
conducted for an online contracting application for public administration. The
approach described in Sect. 3 is applied, by one of the members of NetUnion’s
design and development team, to the part of the process where an end-user
digitally signs a previously submitted document.

4.2 Process Description

Once the to-be-signed document is stored on the server, the end-user can proceed
with the signDocument process

The signing itself has always to take place on the end-user side where any
appropriate security device for signing (SmartCard, software certificate, etc.) can
be accessed. This implies the transmission of confidential data (the document to
be signed and the created signature) over the Internet. The sequence diagrams
shown in Fig. 5 illustrate the signDocument process. The user logs on to the
server (5a), retrieves the document to be signed, does the signing, returns the
signature to the server (5c), and logs off (5b).

= e

1: logi Y d .
ogin(username,password) 1 logout(session) |
___ Zacklogin(session) "

a ' b

1: getDocument(docl D) M

| % sendDocument(dociD, document) |

3: signDocument(document)
4: sendSignature(docl D, signature)

5: storeSignature(docl D, signature, timestamp)
6: updateSigningProcessStatus(docl D)

7: acknowledge(docI D)

[

Fig. 5. Sequence Diagrams of the Signing Process

4.3 The Identified Security Requirements
NetUnion identified the following security requirements for the signing process:

authenticity of the user u to the server s;

authenticity of the server s to the user u;

authenticity of all messages sent by user u to the server s;
confidentiality of password;

confidentiality of session;

confidentiality of document;

confidentiality of signature;

non-repudiation of receipt for the signature.

@O N DOtk W

4.4 Specification of the Security Requirements

The security requirements for the signing process being identified, the next step
was to specify them on the sequence diagrams of Fig. 5. The appropriate macros
were used as values of CASENET tags and attached to the relevant interactions
by NetUnion.

The first two requirements on the list in the previous section imply that the
messages exchanged in the login phase, depicted in Fig. 6, must be authenticated.
This is specified by means of the Message_Authentication macro as the tag-
value for both messages, namely, login and ackLogin, of login_diag as shown in
Fig. 6. Furthermore, the confidentiality of password and session were required,
the fourth and fifth requirements on the list above. This is achieved by using the
Confidentiality macro as shown in Fig. 6.

The third requirement on the list above can be specified by means of SRL’s
epoch construct. We define an epoch, called the secured_session, which is es-
tablished by the login_diag (Fig. 6) and terminated by the logout_diag sequence
diagrams (Fig. 7), respectively. The predefined macro Epoch_authentication® ex-
presses the desired requirement that all messages sent by u must be authenticated
by s. This requirement applies to all interactions between u and s taking place
in the period of time defined by the corresponding epoch, i.e., between login
and logout. Note that the requirement does not apply to the interactions in the
login_diag and logout_diag sequence diagrams.

Now that we have defined the epoch secured_session, we have to say what
are the interactions that may occur within that epoch. This is done by means of
SRL’s within construct, which is used in the signDocument sequence diagram,
as depicted in Fig. 8. The within construct expresses the fact that all of the
interactions in the sequence diagram are permitted to occur within the epoch
secured-session. Therefore, the epoch requirement, Epoch_Authentication, applies
to all of those interactions. Fig. 8.

global:
name: login_diag;
epoch secured_session {
establishment login_diag;
termination logout_diag;
require: Epoch_Authentication({ u},s)
}

= require: Message Authentication;
s Server Confidentiality({ password})

1: login(username,password) _ _[1--""~ .
2: ackLogin(session) _| - - - 1 require: Message_Authentication;
*********************** | Confidentiality({ session})

Fig. 6. Sequence Diagram of the Login Process with its Security Requirements

As mentioned earlier, the requirement of the epoch secured_session does not
apply to the interactions of the logout_diag sequence diagram. Therefore, in order
to completely specify the third requirement in the list, Message_Authentication
is explicitly required for the logout message. Confidentiality of session being one
of the identified requirements, the corresponding macro is also applied to that
message.

In addition, the other identified requirements, namely,

— confidentiality of the signature and the document, and
— non-repudiation of receipt for the signature,

are explicitly specified by means of the corresponding predefined macros for the
relevant interactions.

* This macro is part of the standard macro library that is defined for SRL and can be
used only within an epoch definition.

global:
name: logout_diag

Llogout(session) J] require: Message_Authentication;
Confidentiality({ session})

Fig. 7. Sequence Diagram of the Logout Process with its Security Requirements

global:
name: signDocument
witnin: secured_session|

s: Server

[T 1 getDocument(dociD)

>
>

-- { require:Confidentiality({ documenlm

|2 sendDocument(doci D,document)__J
3: signDocument(document) requ@re:Confi‘dmtialiw({dgnglure}) !]
_|- - 7] require: Receipt_Nonrepudiation(u,sendSi nﬁurgdoch,sgnature)
4: sendSignature(docl D,signature) . - - | s.acknowTedge(doci D))

:| 5: storeSignature(docl D,signature,timestamp)
6: updateSigningProcessStatus(docl D)
7: acknowledge(session)

Fig. 8. Sequence Diagram of the Signing Process with its Security Requirements

An excerpt of the .xmi file generated by the Poseidon tool for these sequence
diagrams and the corresponding class diagram is shown in Fig. 9. The different
CASENET tags appear as instances of the UML:TaggedValue element. One such
instance is shown in Fig. 9, and has the requirements for the logout message as
its dataValue. The SRL specification generated by the SRL-tool for the example
is presented in Fig. 10. This specification is further transformed by the back-end
of the SRL-tool to the design formalism used in the CASENET project.

4.5 Experience with the Integration Methodology

The system designers at NetUnion reported that SRL is easy to use. Since SRL
is combined with a software engineering standard, specifying security require-
ments for a complete application can be done quickly. SRL macros are easy to
understand and to use; the syntax is clear and simple, and they cover a wide
range of security requirements. In addition, it is possible to extend the language
by creating new macros. When using the predefined macros, SRL only requires
a basic knowledge of security engineering and therefore the learning curve is
extremely low. For defining new requirements however a thorough knowledge of
the language is necessary and some security expertise is needed.

<?xml version = ’1.0’ encoding = ’UTF-8’ 7>

<XMI xmi.version = ’1.2’ xmlns:UML = >
<XMI.header> ... </XMI.header>
<XMI.content>

<UML:CallAction xmi.id = ’a21’ name = ’logout(session)’ ... >

</UML:CallAction>

<UML:Stimulus xmi.id = ’a23’ name = ’sl1’ isSpecification = ’false’>
<UML:ModelElement.taggedValue>
<UML:TaggedValue xmi.id = ’a25’ ... dataValue =

‘require: Message_Authentication; Confidentiality({session})’>

</UML:TaggedValue>
</UML:ModelElement .taggedValue>

<UML:Stimulus.dispatchAction>
<UML:CallAction xmi.idref = ’a21’/>
</UML:Stimulus.dispatchAction>
</UML:Stimulus>

</XMI.content>
</XMI>

Fig. 9. Excerpt of the xmi File.

5 Related Work

To put our work in context, we give some background information and a brief
overview of related work.

Work done on formalization of security has been mainly concerned with the
formal specification of security protocols for the purpose of analysis. A few exam-
ples are [3], [19], [14], [4], [1], [11] and [7]. Protocols are specified in some formal
notation, which are then input either directly or after undergoing some transfor-
mation to a suitable analysis methodology. Their correctness is established with
respect to some goals or invariants defined by the specification.

Several of these efforts are based on modal logic, of which [4], better known
as BAN logic, is perhaps the most widely known. SRL has some operators, e.g.,
believes, that are close to the ones used in BAN logic. It therefore should be
investigated whether BAN logic is a particularly suitable target formalism for
SRL.

None of the work cited above deals directly with the specification of security
requirements at a high, abstract level suited for application modeling. Integrat-
ing security engineering into the software development process is of paramount
importance [8], [15]. Instead of an after-thought, security requirements must be
an integral part of the requirements of the system to be built. Work has been
done on capturing the security aspects of a system when modeling software by
using graphical notations, such as the Unified Modeling Language (UML) [16].
Some of the major efforts in this direction are secureUML [10], AutoFocus [20],
and UMLsec [9].

These approaches are similar to ours in the sense that they all introduce
security related elements (concepts) into existing graphical modeling notations.

import (standard) ;
environment {
u, s: principal;
}
epoch secured_session() {
establishment (u,s) {
u -> s: login(username,password);
require: MessageAuthentication(u,s,login(username,password));
require: Confidentiality(u,s,{passwordl});
s -> u: ackLogin(session);
require: MessageAuthentication(s,u,ackLogin(session));
require: Confidentiality({session});
}
termination (u,s) {
u -> s: logout(session);
require: MessageAuthentication(u,s,logout(session));
require: Confidentiality(u,s,{session});
}
EpochAuthentication({u},s);
}
sequence signDocument (within secured_session) {
u -> s: getDocument(docID);
s -> u: sendDocument(docID,document);
require: Confidentiality(s,u,{document});
u -> s: sendSignature(docID,signature);
require: Confidentiality({signaturel});
require: ReceiptNonrepudiation(s,sendSignature(docID,signature),
u,acknowledge (docID)) ;
s -> u: acknowledge(docID);

Fig.10. The SRL Specification of the Example

The major difference is that our security related elements are based on a formal
language with a well-defined semantics. This enables the automated refinement
of the requirements for use in formal security design/analysis methodologies.
secureUML is concerned only with access control requirements. AutoFocus and
UMLsec mainly deal with confidentiality and authentication requirements. Aut-
oFocus uses its structure diagrams, the equivalent of UML collaboration dia-
grams, to introduce security requirements. In UMLsec, different UML diagrams
are used to capture security relevant information using extension mechanisms
such as Tagged- Value and stereotype. A major limitation of these two approaches
is that each deals with a limited set of security requirements and that it is not
possible for the user to introduce new requirements. In contrast, SRL covers a
wide range of requirements, and allows new application-specific requirements to
be defined and reused; this capability is extended to UML through the integra-
tion methodology.

6 Conclusion

We have designed a language based on first-order logic to express systems’ secu-
rity requirements. A methodology for its integration with UML is also defined.
We have shown the practical usability of our approach by presenting a real world
example and discussing user experiences.

SRL and its integration with UML have a number of advantages:

— Security requirements can be specified precisely and at a high level of ab-
straction, independently of the implementation mechanisms.

— SRL is extensible in that it allows experts to define new, application/domain-
specific security requirements, which can be reused by end-users.

— The library of predefined security macros makes it possible to easily reuse
security requirements.

— The formal nature of the language with its well-defined semantics makes
it possible to transform a high-level security requirement specification sys-
tematically and automatically into input for formal security design/analysis
methodology. This permits to verify whether the security requirements are
satisfied by the implementation of the system. It also paves the way for
automatic generation of executable security-preserving code.

— The integration of SRL into UML exploits the complementary properties of
these languages: formality and usability.

— The integration of SRL into UML encourages focusing on security require-
ments at an early stage, raising developer’s awareness of security.

— The integration of SRL into UML makes possible the automated processing
of security requirements from an early stage of system development.

In our future work, we plan to make SRL easier to use for end-users and
apply SRL to other types of security requirements.

As an example, one way to improve the user-friendliness of SRL would be
to make it possible to specify global requirements, such as to express that some
data, e.g., pinCode, is always to be kept confidential. This would express that
whenever pinCode is used in an communication, then there is a confidentiality
requirement for pinCode. This is not possible in the current version of SRL. In an
extended, future version of SRL, the obvious place for such a requirement in the
UML model of a system would be the class diagram; the security requirement
will be given as a tag-value for the attribute in question.

As mentioned earlier, the focus of SRL has been to specify security require-
ments related to communication. We will continue our work by using SRL to
express security requirements for other contexts, such as access management,
and by including the resulting new concepts into the integration methodology
described in this paper.

Acknowledgments

This work has been partially funded by the European Commission through the
CASENET project, IST-2001-32446, in the Fifth Program Framework.
References

1. Abadi, M., Gordon, A. D.: A Calculus for Cryptographic Protocols, The Spi Calcu-
lus. Research Report, digital Systems Research Center, January 1998.

2. Aredo, D. B., Kristoffersen, T., Mazaher, S.: Abstract Security Requirement Speci-
fication. Technical Report DART/03/04, Norsk Regnesentral, Oslo, Norway, March,
2004.

3. Bieber, P.: A Logic of Communication in a Hostile environment. Proceedings of the
Computer Security Foundations Workshop III. IEEE Computer Society Press. June,
1990.

4. Burrows, M., Abadi, M., Needham, R.: A Logic of Authentication. ACM Transac-
tions on Computer Systems, 8(1), February 1990.

5. CASENET, IST project 2001-32446: User Trial Progress Report. Deliverable
CASENET/WP5/D5.2, June, 2003.

6. CASENET, IST project IST-2001-32446: http://www.casenet-eu.org/,

7. Denker, G., Millen, J., Rues, H.: The CAPSL Integrated Protocol Environment.
Technical Report SRI-CSL-2000-02, SRI International, Computer Science Labora-
tory, October 2000.

8. Higginbotham, M. D., Maley, J. G., Milheizler, A. J., Suskie, B. j.: Integrating In-
formation Security Engineering with System Engineering with System Engineering
Tools. Proceedings of WETICE ‘98, July, 1998.

9. Jurjens, J.: UMLsec: Extending UML for Secure Systems Development. Proceedings
of the 5th International Conference on the United Modeling Language (UML 2002).
Lecture Notes in Computer Science, vol. 2460. Springer Verlag, 2002.

10. Lodderstedt, T., Basin, D., Doser, J.: SecuretUML: A UML-based modeling lan-
guage for model-driven security. Proceedings of the 5th International Conference on
the United Modeling Language (UML 2002). Lecture Notes in Computer Science,
vol. 2460. Springer Verlag, 2002.

11. Lowe, G.: Breaking and Fixing the Needham-Schroeder Public-Key Protocol Using
FDR. Proceedings of TACAS 95. Lecture Notes in Computer Science, vol. 1055.
Springer Verlag, 1996.

12. Meadows, C., Syverson, P.: A Formal Language for Cryptographic Protocol Re-
quirements. Designs, Codes and Cryptography, 7(1-2), January 1996.

13. Meadows, C.: The NRL Protocol Analyzer: An Overview. Journal of Logic Pro-
gramming, 26(2), 1996.

14. Moser, L.: A Logic of Knowledge and Belief for Reasoning about Computer Secu-
rity. Proceedings of the Computer Security Foundations Workshop II. IEEE Com-
puter Society Press, June, 1989.

15. Mouratidis, H., Giorgini, P., Manson, G.: Integrating Security and Systems Engi-
neering: Towards the Modeling of Secure Information Systems. Proceedings of the
15th Conference on Advanced Information System Engineering (CAISE*03), 2003.

16. OMG: The Unified Modeling Language Specification V1.5.; Object Management
Group, Needham, MA, U.S.A.”, March, 2003.

17. OMG: http://www.omg.org/technology/documents/modeling_spec_catalog.htm

18. Shroff, M., France, R.: Towards a Formalization of UML Class Structures in Z.
Proceedings of COMPSAC’97, August, 1997.

19. Syverson, P.: Formal Semantics of Logics of Cryptographic Protocols, Proceedings
of the Computer Security Foundations Workshop III. IEEE Computer Society Press,
June, 1990.

20. Wimmel, G., Wiipeintner, A.: Extended Description Techniques for Security En-
gineering. In M. Dupuy and P. Paradinas, editors, Trusted Information, The New
Decade Challenge, Proceedings of the IFIP 16th International Conference on Infor-
mation Security (Sec’01). Kluwer Academic Publishers, 2001.

