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1 Introduction

Optical satellite images are gaining an ever increasing importance as a tool for monitoring
various aspects of the earths surface. In spite of the steadily rising quality of these images,
the interpretation remains a challenging task. This is mainly so due to the complexity of
the observed scenes. The earths surface, and its appearance when observed from space,
is influenced by a large number of factors. Satellite images of the very same scene, even
acquired close in time, can vary widely. This is so for many reasons. Possibly the most
obvious cause for this variation are clouds and their shadows. Moving around in the
atmosphere with the shifting winds, clouds can change the observability of a region to near
zero in a very short time. Similar natural variations can occur on many scales, both spatial
and temporal. Some of these are:

• Atmosphere temperature and humidity variations.

• Atmosphere pollutants, both natural (sand drifts, volcano smoke) and man made
(industry).

• Seasonal variations in ground cover.

• The presence or not of snow.

These and many other factors make it very hard to interpret a satellite image. One
possible remedy is that of increasing the resolution of the acquired images. Over the last
years we have seen a spectacular increase in the quality of the acquired images, both in
spectral and spatial resolution. Another remedy is that of increasing the temporal reso-
lution of the images, that is, basing the interpretation of the satellite scene on a sequence
of satellite images densely sampled in time. It is this approach that will be explored
in the current project. In particular we aim at developing methods for classifying satellite
images where classification is based on the temporal evolution of a class and not on its
appearance in a single scene.

1.1 Aim of this project

The main aim of this project is the establishment of algorithms for classifying satellite
images based on temporal sequences of satellite images of the same scene, thus the
classification will be based on how different classes evolve in time, and not only on how
they appear in a single scene.

1.2 Overview of method

The task of multi-temporal satellite image classification is, as we have already pointed
out, a very complex task. The method we have chosen for solving this problem reflects
this,- it is composed of a sequence of complicated steps all serving very specific purposes.
Initially the problem is split in two separate problems, the problem of image calibration
and intercalibration and the problem of image classification.
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The image calibration problem consists of two steps, that of georeferencing the images
and that of correcting them radiometrically. The georeferencing is necessary in order to
establish the correspondence between satellite image pixels and physical positions on the
earths surface. The radiometric correction consists in compensating for satellite sensor
gain and offset, furthermore we subtract the average radiance measured over deep water in
all channels. This will to a large degree compensate for atmospheric reflection. Geometric
correction was performed on the image data used in this project, radiometric correction
was not performed.

The image intercalibration is the subject of a separate report, see Huseby et al. (2005).
This step consists in combining satellite images, possibly from several seasons, into one
single time series. This is obviously not a straightforward procedure since the phenological
evolution over a season can vary greatly from one year to another. It is e.g. quite possible
that an early season in one year will produce late spring images that would match early
summer images from another, late, season another year. This step is necessary in order to
make data from different seasons comparable and in order to make it possible to combine
such data into one single time series.

The image classification step is performed using a Hidden Markov Model (HMM) for
the phenology of the ground cover. Basically, the ground cover is assumed to be in one of a
series of discrete states. In each of these states the different ground cover classes will result
in observables linked to the underlying state only in a statistical sense. The classification
consists in choosing the class that best explains the observables.

2 Acknowledgments

This project was partially financed by the Research council of Norway. We gratefully ack-
nowledge the Norwegian Institute of land inventory for having provided the digital vegeta-
tion maps used in the project. We also thank Professor Dag Klaveness of the Department
of biology, the University of Oslo for interesting discussions on plant phenology.

2.1 Organization of this document

In the next section we give a brief overview of previous work related to multitemporal
satellite image classification and the use of phenological data in the interpretation of such
data. In section 4 we give a very brief resume of the different types of data used in the
project as well as a description of the preprocessing methods applied. The method that
we have implemented is described in detail in section 5, results and a discussion of these
are given in section 6. Section 7 contains our conclusions.
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3 Previous work

The problem of classification of satellite remote sensing data has been studied since the
advent of remote sensing satellites. Recently, technological advances in satellite technology
has made multispectral and hyperspectral satellite images available, in general this greatly
facilitates the task of classifying the underlying scenes. The large number of available
satellites has also made fusion of information from different satellites an interesting option
when classifying satellite scenes and numerous works report on studies related to this
problem, see for instance Solberg et al. (1996) and Benediktsson and Kanellopoulos (1999).
Another option arising from the high availability of satellite images is to classify satellite
scenes based on temporal sequences of satellite images. It is reasonable to assume that
the different classes comprising the scene will have a varying temporal evolution over a
growing season. Multitemporal classification methods take advantage of this when basing
the classification on an observation of the same scene at several instances in time, see for
instance Andres et al. (1994), Lambin and Strahler (1994), Olsson and Eklundh (1994),
Running et al. (1995), Lambin (1996), Azzali and Menenti (2000).

Spatial and temporal resolution are, unfortunately, a necessary trade-off in remote
sensing. If the given problem requires data with a high spatial resolution, then the temporal
resolution will be low and vice versa. The problem considered in this report requires the use
of LANDSAT data with a spatial resolution of 30×30 meters. The relatively low temporal
resolution of this satellite combined with adverse weather conditions in the study area
(clouds obscuring a large part of most LANDSAT scenes) finally results in at most a few
(2 to 3) scenes being available per season. This is obviously very little when considering
multitemporal classification since the temporal evolution of the classes is poorly resolved
by these very few observations.

A possible remedy is the use of phenological data derived from sources other than
the satellite data. The phenological data would then describe the expected phenological
evolution of the different classes in such a way as to facilitate the interpretation of the
satellite data.

The study of plant phenology is an old discipline in many countries. Recently, the
interest for research in this field has been revived as plant phenology is expected to be
a sensitive indicator of global or local climatic changes, see for instance Roetzer et al.
(2000), Sparks and Menzel (2002), Scheifinger et al. (2003)van Vliet et al. (2003). In order
to consider not only local and regional aspects of plant phenology, but to consider it on a
national and global scale, plant phenology studies based on remote sensing have attracted
much interest, see for instance Ludeke et al. (1996), Owen et al. (1998), Schwartz and Reed
(1999), Chen et al. (2000), Schmidt and Karnieli (2000), Zhang et al. (2001), Schwartz et al.
(2002), White et al. (2002), Zhang et al. (2002), Kang et al. (2003), Zhang et al. (2003)
and Zhang et al. (2004).

Although many studies (see above) of ground cover classification are based on classifying
pixels based on their temporal evolution over a growing season, few authors report on using
phenological models to support the classification process. The development of different
models of plant phenology is extensively reported in the literature, see for instance Chuine
et al. (1998), Chuine (2000), van der Meer et al. (2002), Kang et al. (2003), Schaber and
Badeck (2003). The use of these models in support of ground cover classification is however
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rarely reported in the literature. One exception to this is the work reported in Viovy and
Saint (1994). Viovy and his collaborators suggest using a Hidden Markov Model (HMM) of
plant phenology and then points out that this model could potentially have value as a tool
for classification. The use of HMMs and similar constructs in the study of phenology has
been exploited by many authors, see for instance Balzter et al. (1998), Balzter (2000) and
Dale et al. (2002). Viovy’s suggestion of using HMMs in direct support of classification
seems to be unique in the literature. We will discuss Viovy’s work in greater detail in
section 5.
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4 Data

There are two data inputs necessary to this work, satellite images and phenological models.
In this section we will discuss both and describe the necessary data preprocessing.

4.1 Ground truth data

The Norwegian Institute of Land Inventory (NIJOS) produces detailed digital vegetation
maps for selected regions in Norway. In this study we have used to such maps, those for
Venabygd and Sør-Fron.

4.2 Satellite data

Satellite data are used at two levels in this work. The seasonal characteristics are deri-
ved from AVHRR and MODIS data. The preprocessing of these data are described in
Huseby et al. (2005). The ground cover classification itself is based on LANDSAT data.
The application we consider for the methods we have developed is that of ground cover
classification in a mountainous region in southern Norway (Venabygdsfjellet, see figure 1).
For this region, the growing season is expected to cover May through October. As we
have already pointed out, adverse weather conditions in Norway severely reduces the num-
ber of successful LANDSAT scenes that can typically be acquired for a particular region.
Although the LANDSAT satellites can produce images of the same region every 16 days,
the largest number of acceptable images we found for a particular season was three. The
available LANDSAT data covering the study area are shown in figure 9 in appendix A.

4.2.1 LANDSAT data preprocessing

We dispose of a total of 17 LANDSAT 5/7 TM/ETM scenes giving acceptable to excellent
coverage of our study area. The data are unevenly distributed over the years (from 1987
to 2004) and over the seasons as indicated in figure 9. The scenes stem from various
LANDSAT imagery providers, common to them all is that they were acquired in the L1G
format as specified by the LANDSAT 7 Science Data Users Handbook, see lan (2005). In
this format the LANDSAT data are radiometrically and systematically corrected.

Although the L1G products are georeferenced, the georeferencing applied is not based
on the use of ground control points and typically results in residual positional errors on
the order of 250m. This is unacceptable in the current project and we perform a manual
georeferencing to improve this. This georeferencing is performed using ERDAS Imagine
(version 8.7, by Leica Inc.). Ground control points are selected in the uncorrected images
and are matched with points of known position and altitude in a water mask (a water
mask based on the M711 series of maps made by The Norwegian Mapping Authority is
used in conjunction with a 25m resolution digital elevation model, the DEM25, also by the
Norwegian Mapping Authority). A warping and interpolation is then performed using the
bilinear interpolation approach, in the resulting image the geographic position of the upper
left pixel is known and coincides with a fixed 25m grid so as to allow for easy comparison
between files. The residual error in these corrected images is on the order of 25m.
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Figure 1: Study area. This figure shows the Norwegian national borders along with one of
the LANDSAT (path 199, row 17) images used in this study. The red outline is the border
of the Ringebu municipality, most of the study area is included within this border.

In the L1G product, the contents of all the spectral channels are represented as 8 bit
digital numbers (range 0 to 255). Before using the images, these digital numbers are scaled
back to At Satellite Radiance values. This procedure is described in Chander and Markham
(2003) and lan (2005) for the LANDSAT TM and ETM data respectively.

The final step in the data preprocessing chain is that of calculating the Normalized
Difference Vegetation Index. This index is one of the earliest vegetation indexes and has
been used in a large variety of applications (see for instance Liang (2004) page 250). It is
defined as follows:

ρn − ρr

ρn + ρr

where ρn is the at satellite radiance in the near infrared band (LANDSAT TM/ETM band
4) and ρr is the at satellite radiance in the red band (LANDSAT TM/ETM band 3).

4.3 Phenological data

Although we combine LANDSAT data from several seasons into one synthetic season with
more observations using the methods described in Huseby et al. (2005), the number of
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observations per season remains low. Notably, the number of observations will be too low
to make high quality ground cover classifications possible directly. In order to improve
the classifications, we will incorporate knowledge about the ground cover phenology in the
classification process. This will be described in detail in section 5, here we will only briefly
discuss the necessary phenological data.

The expected phenological behavior of a standardized vegetation ground cover class
when observed in the form of NDVI is illustrated in figure 2 (based on Zhang et al. (2001)).
For a vegetation ground cover class with an early development one would expect the curve
to be shifted left, similarly a class with a late development should have its corresponding
curve shifted right. Different vegetation ground cover types can of course also produce
different values of NDVI over the season. The basic idea of the work reported here is that
the varying temporal evolutions of different ground cover classes can be used as models in
support of the classification process. The problem with this approach is obviously that of
defining the models.

Greenup onset

Greenup stability

Maturity onset Maturity stability Senescence onset

Senesence stability

Dormancy onset

Dormancy stability

NDVI

Julian date

Duration of maturity

Duration of greeness

0.0

0.5

1.0

Figure 2: Standard phenological development of a vegetation ground cover class when
observed in the form of NDVI.

There is a large literature detailing phenological observations on different plant species
from many countries. Typical of these observations is that they pertain to a single species
(not vegetation ground cover classes) and they describe very specific discrete events (such
as budburst or flowering, not seasonal evolutions). In Norway, such observations are for
instance reported in the monumental works by Lauscher and Printz Lauscher et al. (1955),
Lauscher et al. (1959), Lauscher et al. (1978), see also Klaveness (1997) and Wielgolaski
and Klaveness (1997). The translation of this type of data into models of relevance for
the phenology of vegetation ground cover classes is probably not possible. Two options
therefore remain: The phenological models can be derived directly from the satellite data
or the models can be defined based on expert input.

Both approaches have been extensively explored in this project. The first approach,
that of deriving the phenological models from satellite data does not produce satisfactory
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results. The main problem is that the LANDSAT NDVI data can obviously not be used
for this purpose because the temporal resolution is to low. We must therefore use MODIS
or AVHRR data for this purpose. Both satellites can be used to derive NDVI products
and the resolution of the final NDVI product i 250m and 1000m for MODIS and AVHRR
respectively. Due to the high granularity of the vegetation cover in the study area, it is
impossible to extract class specific phenological profiles based on these data.

The only option left is therefore to derive the phenological models from expert input.
This will be discussed in greater detail in section 5.
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5 Method

Roughly speaking, our method consists in classifying vegetation ground cover pixels in
satellite scenes based on their spectral properties and the temporal evolution of these
properties over a season. It is reasonable to assume that different plant species and plant
societies will have a different spectral signatures and different evolutions of their ’greenness’,
that is in chlorophyll content and leaf area index, over a season. Societies with a rapid
evolution in spring will thus reach their peak greenness long before societies with a slower
evolution. It seems reasonable that this could be exploited in a classification algorithm in
order to separate between different plant species and societies.

In this chapter we give a brief overview of the algorithm we have chosen in order to
solve the given problem.

5.1 Markov chain based classification

As shown in figure 2 a plant will typically evolve in four phases during a normal season.
These phases are: dormancy, greenup, maturity and senescence. These phases can be
considered as plant states, while the plant is in any one of these states it will behave in
a particular fashion. The plant states are linked to the NDVI observations one can make
of the plant. In the dormancy state the observed NDVI values will be stable and low.
The greenup state is characterized by a rapidly increasing NDVI value. The maturity state
is characterized by a stable and high NDVI value and, finally, the senescence phase will
be characterized by rapidly decreasing NDVI values. The NDVI values observed in the
different states are in no way unique to that state, rather, the NDVI values observed for
a given state will only be linked to the underlying state through a probability density for
the observable given the state.

These observations have led us to consider a Hidden Markov Model (HMM) formulation
for the statistical model liking the time of year, plant type and plant state to observed
NDVI values. In the following paragraphs we will describe the HMM formalism and link it
to our problem. Our presentation is heavily based on Rabiner (1989) and Viovy and Saint
(1994).

5.1.1 Basic HMM formalism

In a HMM we observe a system assumed to evolve through a series of different states.
Transitions from one state to another happen with certain probabilities. While in a given
state the system will produce observables with a certain probability density. We will denote
the set of discrete states Q of the internal system by:

Q = {Φ1, Φ2, . . . , Φν} (1)

where ν is the number of states. Furthermore, the time series of observations, X̄ will be
denoted by:

X̄T = {X1, . . . , XT} (2)

where T is the number of elements of the sequence. The unknown state of the process at
time t will be denoted Et, thus Et = Φi indicates that the process is in state Φi at time
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t. As we pointed out above, the states are not directly observable, but are related to to
observation X t at times t, (t = 1, 2, . . . , T ) by a probability distribution of measurements:

p(X t | Et = Φi), i = 1, 2, . . . , ν (3)

For a given time period the model is also described by an array of transition probabilities
between each pair of states p(Et = Φi | Et−1 = Φj), i, j = 1, 2, . . . , ν. The probabilities
of transition between the different states are obviously strongly dependent upon season,
thus the process is not stationary and the matrices of probabilities of transition are time
dependent. The final parameters of the model are the initial conditions defined by the
probability of being in a given state at the initial time p(E1 = Φi), i = 1, 2, . . . , ν.

5.1.2 The HMM formalism and classification

As we stated above, the notion of a class from the classification literature becomes the
notion of a system in the HMM formalism. Traditionally, classification of the vegetation
cover observed in a temporal sequence of satellite images is the problem of assigning each
pixel in the scene to a class based on this pixels spectral properties (or derived properties)
and the time evolution of these. In the HMM case, our aim is to assign each pixel to
the system that best explains the observed temporal evolution of the pixel. In Rabiner
(1989), Rabiner identifies three fundamental problems that can be solved using HMM. In
particular, he identifies the following problem: Given an observation sequence X̄T and a
specific HMM, how do we choose the state sequence that is optimal in some sense, i. e. the
state sequence that best explains the observations. Our classification problem is a simple
extension of this problem, we want to optimize the state sequence of each of the HMMs (one
per vegetation cover type) and then choose the HMM that best explains the observations.
In order to do this we have to solve Rabiner’s problem of state sequence choice for each
HMM and then choose the HMM that provides the state sequence that best explains the
observations.

Solutions to this kind of problem are important in many applications and several algo-
rithms are available. They are mainly distinguished by the requirements they impose on
data availability. Baum’s algorithm Baum et al. (1970) bases decisions concerning time t
only on the previous decisions, that is, decisions at time t = 1, 2, . . . , t− 1. Viterbi’s algo-
rithm (and variants) Forney (1973),Hayes (1975) base the decision at time t on decisions
at time t = 1, 2, . . . , t − 1, t + 1, t + 2, . . . , T . We thus see that Baum’s approach is well
adapted to real-time systems whereas the Viterbi approach is the appropriate choice when
all data are available at the moment of decision. For our problem we have chosen to use a
method similar to the Viterbi algorithm, see Kitagawa (1987).

5.1.3 HMM formalism applied to our problem

A satellite scene showing vegetation covered ground will almost certainly show several
types of plants and plant societies. Each of these societies will, presumably, evolve in
a way characteristic for that society. In the HMM formalism, each society represents a
system with possibly unique hidden states and state transition probabilities. The initial
probabilities of being in a given state at t = 1 are also unique to each society. If we want
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Maturity SenescenceDormancy

Julian date

0.0

0.5

1.0

p(Et=φi)

Greenup

Figure 3: The probability of a given plant society being in a given state as a function of
Julian date.

to model for instance three different types of plant societies, we will need three HMM
systems, one for each society. We thus see that the notion of a class from the traditional
classification literature is supplanted with the notion of a system in the HMM formalism.

For our problem we will assume that the set of states is common to all the systems
describing the various plant societies, they are:

Q = {Φ1, Φ2, . . . , Φν} = {dormancy,greenup,maturity,senescence} (4)

thus ν = 4. This choice of states is motivated by the typical phenological evolution of a
plant society described in figure 2.

The transitions between each pair of these states are described by arrays of transition
probabilities as described above. We will assume that conditions are stable over time
intervals of D days, system evolution over one year thus requires 365/D such matrices (D
is typically equal to 7).

Whereas the states are common to all systems, the transition probabilities between
states are obviously not common, on the contrary, the properties of the transition matrices
along with the probability densities of observables are exactly what distinguishes the diffe-
rent systems from each other. Determining the properties of the state transition matrices
should ideally be done based on data (the approach chosen in Viovy and Saint (1994)for
instance), but as we pointed out in section 4 the scarcity of the available data makes this
kind of training impossible. In our case we opt for a different approach, we will derive
the properties of these matrices from biological and botanical descriptions of the plant
societies under study. This approach is based on the observation that knowledge about the
probability for a certain plant society to be in a certain state given the time of year can be
described based on biological and botanical descriptions. Figure 3 shows curves describing
the probability of a certain plant society being in one of the four states we consider as a
function of the time of year. Assuming that the system must be in one of the given states
at a given time, the sum of probabilities at a given instance must be equal to one. This
obviously imposes very strict conditions on the relationship between these probabilities.
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If curves like these can be established for a given society given biological or botanical
input, the transition matrices can be derived by the following formula:

p(Et = Φi) =
ν∑

j=1

p(Et = Φi | Et−1 = Φj)p(Et−1 = Φj), i = 1, 2, . . . , ν and t = 2, 3, . . . , T

(5)
Given Norwegian climatic conditions we will assume that all systems are in the dor-

mancy state in the first time interval, that is, the initial probabilities p(E1 = Φ1) = 1 and
p(E1 = Φi) = 0, i = 2, . . . , 4.

As we see, this formula describes a set of linear relations between the probabilities of
a certain system state vector at time t and the probability of another state vector at time
t − 1. Solving this set of linear equations makes it possible to find the elements of the
transition matrix.

The application of the HMM model to our problem is summarized in figure 4.
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State: Et=Φi

State: Et=Φk

State: Et=Φj

Probability of
transition:
P(Et+1=Φj|E

t=Φi)

Probability of
transition:
P(Et+1=Φk|E

t=Φj)

p(X)

XProbability density
of measurements

p(X)

XProbability density
of measurements

p(X)

XProbability density
of measurements

Time

Xt

Xt+1

Xt+2

Internal chain (states).  Hidden process. External chain
(measurements).
Observable Process.

Figure 4: The HMM formalism applied to our problem.
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6 Results and Discussion

To test the HMM based classification approach we applied it to a subsequence of the
LANDSAT images (7 scenes) covering one summer season (from early June to the middle
of October) of southern Norway (the construction of this sequence is the subject of the
report by Huseby et. al. Huseby et al. (2005)). The images we used contained six spectral
layers each, these were the standard LANDSAT spectra with the exception of the IR
spectra. Georeferenced and radiometrically corrected versions of these images were used
as input to the subsequent processing. A color composite from the image acquired on the
24th of July is shown in figure 5.

Figure 5: Color composite of the Vena scene based on channels RGB=543.

We also accumulated a stack of all seven images (in chronological order). From these
images we chose two test areas, we will refer to these as Vena and Fron. The two scenes
are separated by roughly 10km. Both test areas span a wide range of altitudes (roughly
1000 m). The vegetation ranges from typical Norwegian inland valley vegetation to high
mountain vegetation. From both test areas we dispose of detailed digital vegetation maps
made by the Norwegian Institute of Land Inventory, (NIJOS), the vegetation map from
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the Vena test area is shown in figure 6.

Figure 6: The NIJOS vegetation map from the Vena test area. The color coding is as
follows: coniferous is brown, leaf is yellow, rich heather is light green, poor heather is blue,
marsh is dark green and rockland is magenta. White areas are either outside the Vena
region or areas not interesting for classification (water e.g.). Gray areas are the areas used
for training.

We sought to classify the vegetation cover in both scenes into the classes coniferous
(mainly spruce and pine), leaf (mainly mountain birch), rich heather, poor heather, marsh
and rockland. Using the digital vegetation maps we selected regions representative of each
class in the Vena scene. These training regions were then used to establish the necessary
class statistics both for each separate image and the stack of all seven images.

A priori probabilities for each class were established (see figure 3) and transition ma-
trices for probabilities of transition between states were established according to equation
(5). Classifying the Vena scene using the seven images as input to the HMM method we
get an overall classification accuracy of 63.1%. The result is shown in figure 7. Using the
HMM approach on the Fron scene, still with training data from the Vena scene, the overall
classification accuracy was 62.4%, thus a very slight decrease in relation to the results
obtained on the Vena scene.
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For comparison both scenes were also classified using the ML approach. Classifying one
single image, we obtain the best results using as input the image acquired on the 24th of
July. For this image the overall classification accuracy was 58.2% when compared with the
digital vegetation maps. The result of an ML classification of the chronological stack of all
seven images is shown in figure 8. Using the stack as input the overall classification accuracy
was 63.4%, thus using the full stack clearly improves the results. This result is marginally
better than the results obtained using the HMM. This is not surprising for several reasons.
First of all the ML algorithm was both trained and applied to the Vena region (although
the training regions were not included in the regions on which the algorithm was tested).
Secondly, the ML approach takes as input the entire covariance matrix for all the bands in
the stack of images. Thus all correlations, even between bands stemming from acquisitions
on different dates, were known to the ML algorithm. This is obviously not the case for the
HMM approach.

In order to test the general validity of the training data acquired in the Vena scene we
used the same training data to classify the Fron scene using the ML approach. The overall
classification accuracy falls to 56.3% showing that the ML approach is highly sensitive
to the validity of the training data. In this case the HMM approach clearly outperforms
the ML approach, indicating that the HMM based classification method generalizes better
than the ML method. A summary of the classification results is given in table 1

HMM ML single ML stack

Vena 63.1% 58.2% 63.4%
Fron 62.4% - 56.3%

Table 1: Summary of classification results.
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Figure 7: Result of classifying the chronological stack of all images for the Vena scene
using the HMM classification algorithm. The color coding is as given in figure 6.
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Figure 8: Result of classifying the chronological stack of all images for the Vena scene
using a standard ML classification algorithm. The color coding is as given in figure 6.
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7 Conclusions

We observe the vegetation ground cover of mountainous regions in a multitemporal se-
quence of LANDSAT images. In order to classify the sequences, we have developed a new
methodology for vegetation ground cover classification incorporating knowledge of pheno-
logy into the classification process. The phenological knowledge is represented in the form
of a HMM. The classification quality obtained using the HMM approach compares well to
that obtained using traditional supervised ML methods. The suggested method is flexible
and easily adaptable to other applications.
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Figure 9: The LANDSAT data coverage of the study area. This figure shows the distribu-
tion of LANDSAT scenes that are of acceptable quality for our study area. The distribution
is indicated per year (season) and per six-day period of a month. Notice that no season nor
period of a month is covered by more than three images, a result of the weather conditions
in Norway.
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