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Abstract. Let {ax},-, be a sequence of arbitrary (interpolation) points in R\ {0},
oy = 0o0. Consider the functions
bo(2) = 57—, n=0,1,...

I1 (1 —z/oy)

k=0

and the moments

Hnm Z/bn(t)bm(t)d,u(t), n,m=0,1,....

We prove that, if the sequences 0, n =0,1,..., and fym, n,m = 0,1,... give rise
respectively to infinitely many solutions of the associated moment problems, then these
solutions may be partially described by the formula

1+tz _A(R)e(z) — C(7)
[ T B(2)o(s) — D(2)

The four functions A(z), B(z),C(z) and D(z) are certain limits of quasi-orthogonal
functions and ¢ is in the extended Nevanlinna class.

AMS 1991 subject classification: 30E05, 42C05

1 Introduction

The first complete definition of the moment problem dates back to the 19th century in the
work of T. Stieltjes [17]. He wrote: "We shall give the name moment problem to the following
problem: It is required to find the distribution of positive mass on the interval [0, +00), given
the moments of order k (k = 0,1,2,...) of the distribution”. His definition of moment of

order k was the value of the integral

Sk:/ thdo(t)
0
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and o was to bear the name of distribution. Stieltjes succeeded in solving this problem by
introducing certain types of continued fractions. The immediate generalization to the whole
real line was given by H. Hamburger in [8] where he studied the more general moments
Sp = f_oooo tkdo(t). Again, the continued fractions proved to be useful in Hamburger’s proof.
For a detailed exposition of different moment problems the book of N. I. Achieser [1] is an
excellent reference.

Following Achieser, when posing a moment problem three fundamental questions arise:

1. Find conditions on the moment sequence s, for the problem to have a solution.

2. Is the solution obtained unique?

3. Describe the family of solutions in case there exists more than one.

The answer to 3. for the Hamburger moment problem is due to R. Nevanlinna, see [11].
The result may be found in Achieser’s book, Th. 3.2.2 and also in [16]. Let us briefly
summarize this result.

1.1 The Nevanlinna class and the parametrization of solutions

Denote by U the upper half-plane {Sz > 0} .

DEFINITION 1. A function ¢ is said to be in the Nevanlinna class N if it is holomorphic
in U and its range of values belongs to U. The extended Nevanlinna class N*is the set

N U {oc}.
THEOREM 2 (Nevanlinna). The formula
(1) L(2) :/"" du(t) _ A(2)e(z) = C(2)

wlt=2  B)p(z) - D(2)

establishes a one-to-one correspondence between the aggregate of solutions p of the Hamburger
moment problem and the functions ¢ of the extended Nevanlinna class.

The four functions A(z), B(z),C(z) and D(z) are certain limits of quasi-orthogonal poly-
nomials. They are entire functions of at most minimal type of order 1. It has recently been
shown by Berg and Pedersen [2]| that all the four functions are of exactly the same order and
type, and the order and type have been determined for various specific subclasses of mo-
ment sequences. See e.g. [9],[3],[18]. For a somewhat different approach to the Nevanlinna
parametrization, see [4].

To determine p(t) use the Stieltjes-Perron inversion formula (see [4]):

p({a}) = 15%1 isl, (a +1is),

g e+ 5 (eh +uat) = tim [ 16— is) = 1,(t + )] dt.

1.2 Statement of the problem

Let {ay}, be a sequence of arbitrary (interpolation) points in R\ {0}, ap = o0 and 7,(2) =
n

[T (1 — z/ay). Consider the functions
k=1
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and the moments
umz/m@%@ww,mm:QLm.

The problems 1. and 2. (on the existence and uniqueness of 1) have been addressed by
A. Bultheel, P. Gonzalez-Vera, E. Hendriksen and O. Njastad [5], [6], [7]. Other references
to analog problems can be found in the works of O. Njastad [12],[13],[14], W. Jones, O.
Njastad and W.J. Thron [10], O. Njastad and W. Thron [15]. They introduced the concept
of Orthogonal Rational Function (or shortly O.R.F.) and extended many interesting well
known properties from the classical theory of orthogonal polynomials.

In this paper we are interested in solving the third question. Namely, the sequences i,
n,m = 0,1,... and puo, n = 0,1,... determine two kinds of moment problems. If these
problems admit infinitely many solutions, then we prove that the resulting measures are
characterized by a formula like (1).

The sections 2-6 are introductory material from the theory of O.R.F. where [5] is followed
very closely. The Theorem 9 is the main result of this paper.

2 Rational function spaces and ORFs

Let P,, denote the polynomials of degree at most n. Consider the spaces

L, = {p"(z) : palz) € Pn}, n=01,...

Tn(2)
and put Lo, = Up>0Lp, Ry =Ly, - L, and R = L, - Lo
Let M be a Hermitian, positive definite, linear functional in Ra, ie., M {f} = M {f}

for f € Roo and M {ff} > 0 for f € L, f #0. This functional defines the following inner
product

(f[r90u=M(f7), [,9 € L.

We shall additionally assume M (1) = 1.
The orthogonal rational functions ¢,(z) are by definition, the functions obtained by
orthogonalizing the functions (with the Gram-Schmidt algorithm)

bu(2) = , n=0,1,...

using the inner product (-,-),,. One has

(2) ¢n(z) = ’ﬁnbn(z) + ’f;zbn—l(z) + -+ ﬁbn(o)

Assume also that the leading coefficient k, is positive. Note that we recover the classical
definition of orthogonal polynomials by letting all oy be infinity.
The Riesz-Herglotz-Nevanlinna kernel D(t,z) is given by

_ 141tz

(3) Dt ) = ——.

(In [5] this kernel was defined by —z'ltt—tzz, consequently some results quoted in this paper are
slightly changed.)
The functions Z,(z) given by

(4) Zn(2) = ., n=0,1,...
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are used in the definition of the functions of the second kind:

(5) %(Z) = M, {D(t’ Z) [¢n(t) - ¢n(z)]} - 5n0Z0(z)'

We shall say that ¢,, or that the index n is regular if the numerator in ¢, does not

vanish at a,_1, i.e., ¢n(2) = 22E and p,(an_1) # 0. 00) # 0 means that p has degree
ma(2)”

n.) An equivalent formulatlon of the regularity condlmon is (see Lemma 11.1.5 in [5])

!

Zn (a’n—l)

(6) n regular < E, =
Kp—1

ot | #o

Define
Xn(2,8) = ¥n(2) + sén(2).

The following theorem gives a Christoffel-Darboux type formula:

THEOREM 3. Let H(z,w) = —

Xn (W, ) Xn-1(2,8) _ Xn(2 8)Xn-1(w,1)

Za(w) <>‘ YA

Z (2, 8)xk(w,t) + [st + 1+ D(z,w)(t — )]

(7)

Proof. Theorem 11.3.4, [5].

3 Rational moment problems

Let, as before, M be a Hermitian, positive definite functional in R,. Two different moment
problems may be considered in the context of rational function spaces. The moment problem
in Lo consists in finding a measure p such that

Hno = /bn(t)d,u(t), n=0,1,...,
where 1,0 are certain 'moments’ of the functional M, i.e.,
,U,n():M{bn}, n:0,1,... .

This is the clearly equivalent to solving the representation problem

® My = [ rauty

for f in L.
The moment problem in R is to find a measure p which solves (8) in Ro.. That is, by

knowing
tnm = M {bybr}, n,m=0,1,...

one is to find p, for which

o = /bn(t)bm(t)d,u(t), nom=0,1,....
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We shall denote by M* (M®) the set of measures solving the moment problem in £
(Roo). Evidently, M® C M¥. If Row= L4 then these two sets coincide. This is the case for
example if the interpolation points «y are repeated periodically. In the classical situation
they are obviously taken periodically (all are oo).

The moment problems are classified according to how many elements there are in the
sets M~ (MR). If M* (MR) contains just one measure, the problem in L., (R ) is said
to be determinate; otherwise it is said to be indeterminate. In this paper we are concerned
with indeterminate moment problems. We shall indicate a partial solution to the problem
of giving a parametrization of the solutions of both moment problems.

4 Quasi-orthogonal functions

The quasi-orthogonal functions and the quasi-orthogonal functions of the second kind are
defined respectively by

Qnlz,7) = { #ol2) + T2l 6, 1(2) if T# oo

Zns (9 Pn1(2) if =00

Zn(2) Y 1(2) if T=00

Zn_l(z)

Py(z,7) = { Ynl2) + TZfi(lz()z) Un1(2) if 7 # 00

They are natural generalizations of the quasi-orthogonal polynomials and the quasi-orthogonal
polynomials of the second kind from the classical theory. They fulfill some of its well-known
properties, although they do not in general satisfy orthogonality conditions. It is known,
e.g., that g,(z,7) in

_ a2, 7)
Qn(za 7—) - 7Tn(Z)
has all its zeros in the real line (Lemma 11.5.2, [5]).
We shall say that 7 € R is regular for Q),,(z, 7) when none of the points in {ap, a1, ..., o}

is a zero of ¢,(z, 7). (Recall that ap = 00, ¢, (00, 7) # 0 means deg ¢,(2,7) = n.) Qn(z,7) is
reqular if both ¢, and 7 are regular. We call 7 singular if it is not regular.

There are actually at most n + 1 regular values for 7 (Lemma 11.5.5, [5]). We know also
that (Corollary 11.5.6 in [5]), if @, (2, 7) is regular, then the functions @, (z, 7) have n simple
real zeros in the complement of {ag, a1, ..., an}.

5 Quadrature formula

From now on, we shall assume that the functional M on R is given by M {f} = [ fdu
where p is a probability measure. (We deal with the indeterminate moment problem.)

The quantities & = &,(7), @« = 1,...,n shall denote the n simple zeros of the regular
quasi-orthogonal function @, (2) = @,(z, 7). Using the Lagrange interpolation functions

&ty 2= &
Lm' = .
(Z) EZ—akg&—fk

one defines the coefficients \,; (1) := M (L,;(2)),i=1,2,...,n.
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THEOREM 4. The quadrature formula

(9) / fau=3"Mf (),

with nodes at & = &, (1) and weights Ap; = \p; (7) , 1s valid in R,,_1. The weights are positive.

Proof. [5], Theorem 11.6.1.
This formula tells us that the atomic measure p] defined by

(10) iy (z) = Z Anidg, ().

where ¢, () is the Dirac delta function at z = §;, solves the truncated moment problem in
Ry,—1. In other words: The measures ;o and ;] define the same inner product in £,,_;.

6 Nested disks

Let z ¢ R be fixed. The rational function

P.(z,7)

R, (z,7) = _762”(2,7')

as a function of 7, transforms the extended real line onto a circle K, (z) that does not
degenerates into a line. Namely, for 7 € R, all the zeros of Q,(z,7) are real. Thus for a
given 2 ¢ R, Q,(z,7) #0 for all 7 € R.

Some properties about the closed disks A, (z) bounded by K, (z) are summarized in the
following theorem:

THEOREM 5. Let n be a reqular index. For z € C\ R :

i) Kn(2) = {z eC: :i [ (2) + sk (2)]* + [1 = s|" = (s + S)%}:

Ay (z) is obtained by replacing = by < .
ii) The circle K,(z) is in the upper half plane.
ii) If m and n are regular indices, m > n, then A,,(z) C A,(2).
i) The circles K, (z) and K, _1(2) touch.
v) If n is a singular indez, the whole plane is mapped to a point.

Proof. May be found in Theorem 11.7.1, [5] together with formulas for the center and
the radius of K,(z).

A very important assumption is that the sequence A of regular indices is infinite. By 73)
above, the discs A,(z), n € A are nested and we may thus define the limit disk Ay(z) =

() An(z). We say that we are in the limit point case if Ay is a point. The limit disk case
neA
is when A, is a disk with positive radius.

In the following we denote by C, the set C\ {fl U {—1, z}} where A is the closure of the
interpolation points {a,}oo, .
We have the following invariance theorem:
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THEOREM 6. Suppose that for a given zg € C\ {RU{—1i,i}}, Ax(20) has positive radius.
Then Ay (z) has positive radius for every z € C\ {RU {—i,i}}. Furthermore the series

(11) Z|¢k(2)|2 and Z e (2) [

converge locally uniformly in C,.

Proof. [5], Lemma 11.7.3 and Theorem 11.7.5. The convergence of the series (11) is
formulated for z € C\ {RU{—i,i}}, but the argument implies convergence for z € C,.

7 Riesz-Herglotz-Nevanlinna transform and limit circle

It was proved in [5], Theorem 11.8.1 that M* (the set of solutions of the moment problem
in L) is not empty provided that there are infinitely many regular indices associated to
the sequence {¢,}. In this case, we have the following description of the value sets of the
Riesz-Herglotz- Nevanlinna transform

1412
Qu(z) :/ dp

t— =z

for z € C\ R, in terms of the limit circle:
THEOREM 7. {Q,(2) : p € MR} C Ax(2) C {Qu(2) : p € M5},

Proof. [5], Theorem 11.8.2.

Note that if Ro= L, the inclusions may be replaced by equalities. This is well known
from the classical situation, see [1], Theorem 2.2.4.
We have the following consequence of the first inclusion:

COROLLARY 8. If M® # 0 and at least one of the series in (11) diverges, then the
moment problem in Ry, is determinate.

8 The functions A,, B,, C,, D,

Let zo ¢ {0,04,...,0n,...} be a fixed real number. Define the following rational functions
n—1
(12) An(z,20) = EnH(z, ) [Z P (2) k(o) + 11,
k=1
n—1
(13) By(z,m0) = —EnH(z,1) [Z b1 (2) Yk (20) — D(Zano)] ;
k=1
[n—1
(14) Cn(z,z0) = E,H(z,x) Zwk(z)qﬁk(wo) +D(z,x0)] :
[ k=1

(15) D,(z,20) = E,H(z o) iqbk(z)qﬁk(xo)—i-l
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Then by the Christoffel-Darboux relations for (s, t) € {(0,0), (0, 00), (o0, 0), (00, 00)} (by,
e.g., (s,t) = (00,00) we mean to divide (7) by st and let s,¢ tend to infinity)

16
17

(16)
(17)
(18)
(19)

19

where we have written ¢, (-), ¢, (-) instead of ‘z’"() and w”
The functions A,, B,,C, and D, will play a fundamental role throughout this paper. In

Section 10 we show that these functions define, by letting n tend to infinity, four functions
A, B,C and D, analytic in C,.

9 The Nevanlinna Parametrization

We may now state the main theorem of this paper.

THEOREM 9. Assume that the moment problem in R s indeterminate and that the
sequence of reqular indices contains infinitely many elements. Then there exist functions
A,B,C,D, analytic in C,, such that

i) For each function ¢ in the extended Nevanlinna class, there exists a solution p of the
moment problem in Lo, such that

[ L) - A =00

(20)

ii) For each solution p of the moment problem in R, there is a function ¢ in the extended
Nevanlinna class such that (20) holds.

REMARK 10. ) is still valid in the more general situation where p is any solution of
the moment problem in Lo satisfying [ 2du(t) € Ax(z) for all z.

REMARK 11. In case we have Lo, = R, the theorem implies the existence of a one-to-
one correspondence between Nevanlinna functions and solutions of the moment problem, like
in the classical situation.

10 Auxiliary results

In the following K stands for a compact set in C, = C\ {fi U {—1, z}} where A is the closure
of {an}o” ;-

PROPOSITION 12. Let z € C, and let n be a reqular index. The following assertions

hold for R,(z,7) = —S"(% and An, B, Cp, D, defined as in (12)-(15):

a) (A,D,, — B,Cp)(z,z0) = E2 (%) (Hx") for z € C,\ {0}.
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b) For
én($0)+7—‘$n71($0) .
(21) t=t (.730 7') = 1;”(‘770)_"7_1/;71,—1(.’170) Zf T 7é S
¢n—1(z0)
one has
_ An(2,20)t—Cn(2,20) -
(22) R,(z,7) = { Enéz,wggthn(z’wo) if t # oo
’ n\%,Z0 . _
~ Balz.0) if t =00

¢) If the limit disk case occurs and the sequence A of reqular indices is infinite, then there exist
functions A(z, o), B(z,%0), C(z,20) and D(z,xo), analytic in C,, such that the following
limiting relationships hold uniformly in K for fixed t:

1 neA
E—An(z,xo) — A(z, x9),

n

1
— By (2, 0) el B(z, zy),

3

Furthermore,
A(2,20)t—C(2,m0) .
—————""= iftF# 00
Ry(z,7) 255 Bbzmodt=D(z0) .f 7_é
—Blra if t =00
B 0)

uniformly in K for t fized, provided K C C\ {RU {—1,i}}.

Proof.
a) (A,D, — B,Cy)(z, x0)
= [cho)zﬁn_l(@ _¢n ¢n 1 JCO} [ n(Zo) Cbn 1 én(z)én—l(xﬂ)}
- [@En(iﬁo)ﬂgn 1(2 ¢n 1(o ] [¢ o Tﬁn 1 )_Iﬁn(z)énfl(xo)]

o .
= —Un(20)thn1(2)Pn (2 )cb 1(20) = Yn(2)Yn1(w0)n(0) b (2)
Un

¢
+hn (20)Pn-1(2)1n (2) $n-1(20) + Gn(2)thn—1(20)$n (z0) -1 (2),

which factors as F,(z, 2) F,(xo, o) with
Fn(Z, Z) = TZJn(Z)(Z;n,l(Z) - (gn(z)q’znfl(z)
The conclusion follows by the determinant formula (see [5, Th.11.2.3])

1+ 22

(23) Fo(z,z2) = o

Ey,

and the fact that E,, # 0 iff n is a regular index.
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b) Assume first 7 # 0o and t # oco. By the definition of ¢, and B, and D,, given by (17)
and (19) respectively,

B(z,20)t — Dp(z,z

5
. v [(CUSLIC REACTAEN)  CIEAREAIER)
bn

Tﬁn(iﬁo) + 7 U (o)
~ (Bn(@0)dn-1(2) = 3n(2)dn-1(20) ) (n(wo) + Tehn1(20)) |

which reduces to

1
1/Afn(330) + 71/;71—1(550)

+ 76n-1(2) (Y (20)dn1 (30) — Bu(@0) 1 (20) )|

- - (%Hid} — s (Bals0)dna ) = Ga(ao)n-s(a0)) (0(2) + 1 (2))

By the determinant formula (|5, Th.11.2.3|) and the definition of @,

[80(2) (n(w0) Bn-1 () — (o)1 (20))

2
(29)  Bu(zmo)t— Dalzmg) = —————— B, (1 - j“O) Qn2,7)
1/171(330) + 7 1/}71—1(370) ) Zn(z)
Analogous calculations show that
1 1 2\ P,
(25) An(z, l'())t - C, (Z xo) E, ( +2$0> n(Z, T) )
Vn (o) + 71 —1(20) Ty Zn(2)

Dividing (25) by (24) we get (22) provided that E,, does not vanish, which in turn follows
from the assumption that n is a regular index (see (6)).
The case 7 = 00, t # oc is simpler:

B(z,x0)t — Dy(2, z0)

= 5 o [ (00 = busa)) dua
- (én(xﬂ)qgn—l(z) - an(z)énq(ﬂﬂo)) 1[,”_1(3;0)]

- ; 3(%) [31-1(2) (9 @) (o) — a0} (a0))]

_ 1 14+ 23\ Qu(z,7)

N "ﬁn—l(xo) bn ( 3 > Zn(2)

Analogously

1 1 2\ p
An(z,xo)t — Cn(Z,.’l?()) = — En ( +-/L‘0) n(Z,T)

n—1(0) 3 Zn(2)
and again (22) follows.
It remains to see what happens if ¢ = oo. Two possibilities arise: if 7 = oo, then
VYn-1(zg) = 0 (¢n-1(z0) # 0 and ¥, (z¢) # 0 by the determinant formula), A4,(z,z¢) =
¢n($0)wn—1(z)’ Bn(Z,xo) = lﬁn(l‘o)gbn_l(Z) and

(26) R,(z,00) = _¥na(2) | An(z70)

¢n—1(z) Bn(z’xo).
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If 7 # oo then ¥,_ () # 0 and so 7 = —%, thus

Ruer) = D@ +m() | Ga(@)dn (@) = daleo)nnale
, ¢n(z) + T¢n71(z) %(Z)wnq(xo - wn To (bnfl(z)
_ A"(Zaxﬂ)
(27) = " Bu(z o)

¢) As stated in Theorem 6, if A, (2) has positive radius, then

(28) > én(z) [

and

(29) () P < o,

hold uniformly in K.
By definitions (12)-(15), the Cauchy-Schwartz inequality and (28)-(29), we have e.g., that

the sequence B—Z is a Cauchy sequence. Namely, for n > m > 0,

Bo Bl _ ‘H(Zaﬂfo) [Z m(@m@@”

E, E,

n-1 % n—1 %
< |H(z,0) Z |k (2) Yk (z0)| < |H (2, z0) (Z |ok(2) ) (Z |¢k(x0)|2) %,
k=m

k=m

uniformly in K. This proves uniform convergence on compact subsets of the sequence 4 B
to a holomorphic function in C,, giving the first four asymptotics.
If we write (22) as

An(z, mo) Cn(z,zo)
E F. N
Bn(znmo) Dn(ZmO) Zf t 75 &0

En En

R,(z,7) = .
n zmQ
Bn(z Q) Zf t = o0

n

and we let ¢ be fixed and n tend to infinity along the sequence of regular indices A,

A(z,z0)t—C(z,20)

neA{—W iftF oo

Rn(z, T) — Alz,x .
_B(z,:cg) Zf t=00

Note e.g., that the limit functions A(z, x¢)t—C(z,x¢) and B(z, zo)t — D(z, x¢) cannot vanish
simultaneously, otherwise

A(z,20)D(z,20) — B(z,%0)C(2,20) =0,
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contradicting a) for n — 0o. To prove uniform convergence, we must show that for z € K,
the expressions 2= (Z x")t D”(zn“) B(z,x0)t — D(z, 1) for t # oo and an‘)) B(z, zg) for
t = oo are unlformly bounded away from zero. Take for example the case t # oo. The
denominator in R, (z,7) does not have any zero outside R. Hence, by Hurwitz theorem,
the limit function B(z,zo)t — D(z, () cannot have any zero outside the real line either. It
follows by continuity of S (-) that there is an € > 0 such that

| (B(z, x0)t — D(z,30))| > e,

uniformly in K. Finally, by the uniform convergence of the denominators of R,(z,7) in K,

there is a positive 7 such that ‘% (B”S:”O)t - D”%m“)) ‘ > n for all z € K and n large enough.

LEMMA 13. Let n be a reqular index. Define the rational functions

An(za Z‘())t - Cn(za 330)
By (2, 20)t — Dy(2,20)’

wy(t) = —

A(z,z0)t — C(z, z0)
B(z,z0)t — D(z, 1)

For fized z € U, w, and w transform U into A,(2), and U into Ay (2) respectively. These
correspondences are bijective.

w(t) = —

Proof. It follows by the formula in Proposition 12 a) that

aw,) B () ()

dt (Bn(Z,.’E())t - l)n(ZaIEO))2

Y

which is positiveif z € R\ {fl U {0}} In this situation wy, (t) increases along R, as ¢ increases

along R, and so w,, is an automorphism of the upper half-plane. Take z close to the real axis.
It is known from Proposition 12 and Theorem 5 that w,, transforms the real line into a circle
contained in U. By continuity, this circle must be oriented in the counter clock-wise sense.
Hence, w,, maps U into the disc A,(z). This may be used to prove that w cannot transform
U into the exterior of A, (z). Indeed, let ¢ € U. Since w(t) is the point-wise limit of the
sequence wy(t) € Ap(z), and these discs form a nested sequence associated to consecutive
regular indices (see Theorem 5), then w(t) € [, cp An(2) = Ax(2), where A is the sequence
of regular indices.

The last result of this section deals with the question of how zy must be chosen to achieve

the regularity of B, (z,z¢) which we make use of later.
We have

Il (5,7,) if () £ 0

Bn ; = n
(z xO) { _%Qn(za TTL) Zf wnfl(zo) =0

for

1(zo0)

00 if hnor(z0) =0

Let g,(z,7,) be the numerator of @, (z,7,). Write ¢,(z,%¢) = gn(2, Tn, o) to emphasize its
dependency on zy and recall that g, (0o, zy) # 0 is interpreted by saying that deg ¢,(z,7,) =
n.

T, :{ _ifiﬂ if q/snfl(xo) #0
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LEMMA 14. We may choose xo such that

i) T, 1s regular for all n, i.e., g,(ag, o) # 0 for k=1,2,...,n for all n,

it) thn(z0) # 0 for all n.

Proof. Let ¢,(z) = 2’"—8 and 9, (z) = Z"—(?) be the n-th orthogonal rational function
and the function of second kind respectively. ange first choose zy outside the countable set of
all the zeros of all the functions 1, (2), n = 1,2,... . Two possibilities must be considered:

Case 1: ap # o for k=1,2,...,n.

We may write

(1-35)
W‘/ﬁnﬂ(z)-

(30) Qn(za Tn) = ¢n(z) + 7

Hence

(2, Tn) =pn(2) + 1(1 — )Pn—1(2).

Qp—1

Clearly from the definition, 7, satisfies the equation

G (20) + (1 = —2=) g1 () = 0.

Op—1
Now fix n. There are at most n values 7", ... 7(™ of 7 which are singular values, i.e., for
which
(31) pn(ak) + T(l - )pnfl(ak) =
Q1
for k = 1,...,n. For each such singular value 7™ there are (at most) n values n%m), .. ,nq(lm)

of xq such that
Zo

qn(xo) + T(m)(l - )qn,l(:ro) = 0.

Op—1

Let xq ¢ {n@, IO 7)@, . ,77%")} . Then the value 7,, determined by

(32) qn (o) + T (1 — o

Yan—1(z0) =0

Qp—1

is not a singular value, i.e.,

Pa(0) + (1 = 2 )p, 1 () #0

n—1
for k=1,2,...,n.
In other words
fork=1,2,...,n.
Case 2: oy = oo for some k € {1,2,...,n} .

If oy, 1 = oo then degq,(z,7,) = degp,(z) = n independent of 7. If v, 1 # o0, there is
at most one value 7% of 7 such that

deg q,(2z,1,) = deg(pn(2) +7(1 — )Pn-1(2)) < n.

Qp—1
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On the other hand, there is at most one value (¥ of z, for which

auleo) + 700 - =

)anl(iﬂo) = 0.

n—1

Let 2o # n{®). Then the value 7,, determined by (32) is such that deg g, (z,7,) = n.
Now let zo ¢ | {77(0), T I O né")}UU {zeros of 1/3,1} . Then (33) and

deg gn(z,7,) = n clearly hold for all n.

11 Proof of the Main Theorem

Let us first prove 7).

Define ¢ by the formula
0,(2)D(2) + C(2)
Qu(2)B(2) + A(2)

(34) p(2) =

where Q,(2) = [ HE2du(t). If Q,(2) = —A(z), then ¢(z) = oo and (20) is correct. Next
H t—z H B(z)
A(z)

assume £,(z) # - It follows that ¢ defined by (34) is meromorphic in U. To prove
that ¢ is in the Nevanlinna class we proceed as follows: By Theorem 7 we know that
Q,(2) € Ax(2) (the limit disk) provided that y is a solution of the moment problem in R.
In addition, by Lemma 13, ¢t € U if and only if w(t) € A (2). For the value t = ¢(z) we
have w(t) = Q,(2) € Ax(2), hence t = ¢(z) € U for a given z € U. This property implies
that ¢ is holomorphic and maps U into U.

i) Let us now prove that for ¢ in the extended Nevanlinna class there exists a measure
p in M¥~ for which (20) holds.

Consider the function

An(2)p(2) — Cu(2)
(35) @& = =B e(e) ~ Dale)

Let ¢ € N*. Then either ¢(z) = t for some ¢t € R or ¢ maps the open upper half-plane
U into U. In the first case w,(¢(2)) = w,(t) € Kx(z) for all z € U. In the second case
wn(¢(2)) is in the interior of A (z) for all z € U. Hence (,(2) is actually in N.

According to Nevanlinna’s formula (see [1, §3, eq. (3.3)], p.92), there is a measure y,, for

which
1+1tz

Cn(z):az+b+/ ;

dpin(t)

—z
holds with ¢ > 0 and b € R.

By Corollary 11.7.2 in [5], for z = 4, —%, w,(t) reduces to the points 7, —i respectively. It
follows by letting z = 7 in the above equation that

(2) :az+/1t+tzdun(t),

—Z

where a =1 — [du,(t) =1 — |l -
We shall show that ¢ = 0. Note that for z € U

Gal2) /1+t2 _ 1+z2/ z
o =at z(t_z)dun(t)—a+|un|+ = t—zd’un(t)
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/ 2|

The above inequality shows that e.g., when z = iy, y > 0 (@ is bounded in any sector

d <o <m—246 0 € (0,7/2)), the functionszl(:r_tz) € L'(u,) (u, is a finite measure as

follows from the positivity of a) and that they are dominated by an integrable function.

and

By Lebesgue’s theorem C“T() % a. The boundedness of (n(2) in the upper half-plane (see
Lemma 13) implies a = 0, so that

(36) (al2) = / Lt ().

t— 2z

Let us show that u, is a solution of a certain truncated moment problem. Using the
quadrature formula in Theorem 4, it was proved in Lemma 11.10.6, [5| that for 7 regular,
the following expression for R,(z,7) holds:

‘snlc
Here &, (7) are the n simple zeros of Qn(z, ).
Let 7 be such that R,(z,7) = —% (e, 7=7, = — ¢" _Un(@0) v (97)), take o as

71(300)
in Lemma 14 (to ensure that 7 = 7, is regular for @,(z,7)) and p as in (10). From (37)

follows that

(38) / 1+ tzd,uT(t) _ _An(z,xo).

t—z " By (z, o)

We shall now prove that p, and u] define the same inner product in £,_;.

Recall that M,, (f) = [ fdu gives rise to an inner product which will be denoted by (-, -) i
Let y and v be two positive measures on R. The inner products (,-) and (-,-), coincide in
L, | iff

(39) lim [(Qu(z) . Qy(z))(k)] =0, k=0,1,...a% -1,
Z—rQ

where o is the multiplicity of o in the set A,y = {i, —i, a1, o1, 2, o, . . . A1, Ap1}-

This assertion and its proof are given in [5|, Corollary 11.10.4. The limit above is in the
sense that z approaches o throughout a vertical line. If « is infinity, then let z = 1y, y — oc.
We take lim f(z) = lim f(2).

2—00 2—0° %
From (36) and (38) follows that
Qun (2) = Qi (2)

_ Au(zm0)p(2) — Cal(2,20) | An(z, 7o)
(40) ~ Bu(z,20)9(2) — Dp(z,70) * B, (z,10)

By Lemma 14, 7y may be chosen such that ,_1(z9) # 0. Thus, by Proposition 12 ), (40)
equals

(41) () 2)
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We have
i
Bu(ean) = ~ P18, )
(42) _(J}n—l(xO)Qn(za Tn)
2Mp—1(2)
where g,(z, 7,,) is the numerator of Q,(z,7) and 7, = —%

For D, (z,x,) the situation is similar:

_bna(@)an(zmy) s 4 0
(43) Dn(Z, xo) = R 271'7;)—1(12&) Zf ?nfl(xﬂ) 7é
On (o) 2225 if Pna(w0) =0

where p,,_1(2) is the numerator of ¢,_;(z) and 7 = —-2n(z0)_

On—1(x0)
It is not difficult to check that for ¢,_1(zq) # 0, (41) is equal to

m2 ()1 + ) B ()

2
o

G 1(20)an (2 7a) [Bn 1 (20)an (2, 70) 9(2) = b 1(@0)an (2, 77)]

(44) — -

and for ¢,_1 () = 0, (41) is equal to

()0 + 2B (M50

o

D1 (20)an (2 7) |1 (20)an (2, 7a) 9(2) + b 20) (1 = 525)pa-1(2)|

(45) =-

Qp—1

We introduce the following subclasses of Nevanlinna functions:

Nn={goej\/:{hm”‘*k(z_a’“)‘p(zﬁo if oy 7 00 ,k:1,2,...,n—1}.

lim, o, 27 p(2) #0  if ap =0
LEMMA 15. Forn > 2, N, is dense in N with the topology of point-wise convergence.

Proof. The representation of an arbitrary function ¢ € N is by Nevanlinna’s formula
[1, p.92]

1+1¢
ga(z)zAz—i—B—i-/ t+ ©

where A, B are real numbers, A > 0. We have the following inequality in U :

d(t).

|z — 1
lz—t| ~ sinf’
where [ is the angle between the vector z — ay and the real line. Lebesgue’s convergence
theorem applies to the function %(z — ay). Le., since
1+1tz z—a 0 'Lf t 7é (673
t— 2 (Z—Otk) — { —(1+a%) if t=oy

we have
lim (z — ax)p(2) = —(1+ i)y ({ar}) -

zZ—rQy
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Take €,,¢ > 0, €, — €. Let {0,} be a sequence of atomic measures concentrated at the finite
points in {4, a, ..., a,} such that §,— 0 and let

141z
t—=z

en(2) = p(2) + enz + / db,(t).

Then ¢, (2) satisfies the following properties:
i) (z = an)pn(2) =¥ —(1+a}) (v + 6n)({as}) <0,
i) 27V (2) 23 A+ e > 0.

Thus ¢, € N,. Moreover, by the definition of ¢,, ¢, — ¢ point-wise, which proves our
claim.

For ¢, € N, since ¢, (o, 7,) # 0 for a # 0 and deg g, (2, 7,) = n for ap = oo, (44)-(45)
equal

(=)t F(z) ifap # oo,

z*“k#G(z) if p = o0,

where F(z) is analytic about oy and F(z) = O(z —ax) when z — ;. Analogously
G(z) is analytic about co and G(z) = O (1) when z — oo. Hence (39) holds for o €
{on, 00 ... 001,001}, 4 = pin and v = p7. It remains to observe that €, (i) — €,- (i) = 0.
This is also true because p, is a probability measure (see argument that led to (36)), giving
O, (1) = 7 and M(i) = Q7 (i) = i by the quadrature formula together with the normal-
ization M (1) = 1. We have proved that for the given choice of ¢,, i, is a solution of the
truncated moment problem in R,,_;.

Following the proof of Th.11.8.1 in [5], since p, are probability measures one can extract
a subsequence p,, that converges weakly to a measure p, solution of the moment problem
in L,,. The kernel 1;—'5: is continuous on R for z € U. The weak convergence of the sequence

fn, implies
_ 1+tz k 1+1tz
@) = [ T [ T duto.

On the other hand, by Proposition 12 ¢) and the point-wise convergence of ¢, to ¢,

A m)en(d) — Culzze) & Alzzo)e(z) - Oz z0)
w2 = = e a0)om (2) — Do (mr70) | Blzm0)o(z) — D(zao)

so that

[ L) - - Al = Ol
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