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Summary

We formulate a Bayesian model for assessing the depth-to-time conversion error in seismic wavelet estimation. The method is tested on a dataset from offshore Norway. We compare the estimated wavelet with a wavelet obtained from a standard method and with a wavelet based on a Bayesian method where the depth-to-time conversion error is neglected. The proposed method result in a wavelet with which is more focused in frequency domain and has larger peak amplitude than the alternatives.
Introduction
Seismic data provide valuable information for exploration and reservoir description. The seismic wavelet is a key property in quantitative analysis of seismic data as it provides the link between seismic data and elastic earth parameters.  An erroneous wavelet will flaw any quantitative analysis such as seismic inversion.  It is therefore important to put effort into estimation of the seismic wavelet. The time spent on wavelet estimation should be compared with the time spent on the most time consuming process where the wavelet is used.  
We consider wavelet estimation in the well tie setting. The intrinsic problem of well tie analysis is that the seismic data is measured in time [s] whereas the well logs are measured in depth [m].  The well logs are therefore commonly converted to the time domain using a depth-to-time relation, estimated by check shots. An imperfection in this depth-to-time relation causes a misalignment between well logs and seismic. The processing of the seismic may also create an additional misalignment. This misalignment will appear as errors in seismic amplitudes if not properly handled. The depth-to-time curve must therefore be corrected locally. A manual fit of the deviations is a common way to handle this problem in practical situations.  Recently, interest has risen for automated calibration of the depth-to-time relation, e.g. Buland and Omre (2003) and Gunning and Glinsky (2006). An important aspect when estimating the adjustment to the depth-to-time relation is to avoid overfitting. When an adjustment is introduced in the well tie, the corresponding uncertainty must also be accounted for.
We introduce a Bayesian model for wavelet estimation similar to the one presented in Buland and Omre (2003), but we define a different distribution on the depth-to-time conversion error. We test the methodology on a dataset from offshore Norway, and compare the methodology to a traditional estimate, see e.g. White (1984). 

Geophysical model

We use the convolutional model for seismic. For a vertical well the relation between seismic trace for angle ( and the corresponding reflectivity is then given as
                                        d(t,() = ( cpp(t-( ,( ) w((,( )  d(  +  ((t,( ),                                       (1)
where d s the seismic trace for the common angel stack, cpp s the reflection coefficients, and w is the wavelet and ( is the error term. The reflection coefficients can be computed from the well logs. The continuous version of the weak contrast approximation is used here, 

                     cpp(t,()  (  aVp(( ) (t lnVp(t)  +  aVs(( )  (tlnVs(t)  +  a((( )(tln((t),                     (2)
where (t indicates differentiation with respect to time, ln denotes the natural logarithm, a.(() are coefficients from the weak contrast approximation, Vp is pressure wave velocity, Vs is shear wave velocity, and ( is density. The elastic parameters Vp, Vs, and ( are measured in depth and an estimated depth-to-time curve, t0(z), is used to align the elastic parameters to the seismic. The depth-to-time error is the deviation between the true and estimated depth-to-time relation, i.e. t(z) = t0(z) +  (t(z). In practice we use the initial depth-to-time estimate, t0, as the depth reference, yielding the relation:
                                                          t( t0) = t0 +  (t(t0).                                                           (3)

There are three types of error to be considered when estimating wavelets. Errors in the seismic data, errors in well-log measurements, and misalignment between the well logs and seismic trace. The two first errors are modeled by a common additive noise for the amplitudes. The error in the depth-to-time relation is modeled separately. 
Statistical model
In the current approach we phrase the problem in a Bayesian framework. The problem can be formulated in discrete matrix notation in the following manner: Find w given the relation,

                                                               d = C(tw + (,                                                              (4)
where d is the seismic data, C(t is a matrix representing the reflection coefficients computed for the depth-to-time relation corrected with (t, and ( being amplitude error. The likelihood of the data is then subject to both the error distribution of amplitudes and the error distribution in the depth-to-time relation. 

The wavelet, w, is modeled as a multinormal distribution. Smoothness constraints are imposed in time and angle domain through correlations. Smoothness in the frequency domain is imposed by using a finite wavelet length and decay of the standard deviation towards the end of the interval. For comparison with standard methods we use a standard deviation proportional to Papoulis kernel. The window length increases with angle in order to account for wavelet stretch. The amplitude error for the seismic data, (, is modeled as a stationary Gaussian random field with a stochastic variance. Smoothness in the time and angle domain is modeled through correlations. The variance of the error model is included in the stochastic model because an estimate of this yields the signal to noise ratio. The standard deviations, ((, are independent for each angle, and have identical inverted gamma distributions. The inverted gamma distribution is given by the functional expression

                              invGamma(x; r,( ) = 2· ( r· x -2r-1 · exp{-( x -2}/((r),                               (5)

where ((r) is the gamma function which normalizes the density. In the case study we use r=1.05  and  (= 0.09072. For these values the mean standard deviation is 0.5. 
The depth-to-time error is modeled as a zero mean Gaussian random field. The depth-to-time relation affects the well logs and is therefore common for all angles, but independent in different wells. This model does not account for residual moveout since this requires a separate depth-to-time relation for each angle. Smoothness is imposed by a high auto-correlation in the model. This correlation is modeled by general exponential correlation function with exponent ( close to 2.0.  The expression for the general exponential covariance function is
                                          genExp(h;(, R, ()  = (2· exp{(3·| h/R|(},                                      (6)

where ( is the standard deviation, and R is the range. The standard deviation imposes a soft limit on the size of the deviations from the depth-to-time curve and the range imposes an additional limit on how fast the deviations may change.  
For a given depth-to-time relation and noise standard deviation, the distribution of the seismic data is multinormal, and the posterior distribution of the wavelet is multinormal as well. It hence suffices to sample the posterior distribution of depth-to-time error and noise standard deviations in order to control the full posterior. This is sampled through the relation
                                             p((t, ((|d) ( p((t) p((() p(d| (t, (().                                         (7)

The functions p((t) and p((() are easily evaluated since these are the prior distributions, whereas p(d|(t,(() can be evaluated since this is a multinormal distribution.
Case study

Figure 1 displays seismic data for 10(, 21(, and 36(, and the well logs Vp, Vs, and (. Prior to the estimation all seismic traces were scaled to have unit variance.
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Figure 1: Seismic angle traces in the well position and well logs.

The method was tested using wavelet length, 80ms, 88ms and 96ms for the angles 10(, 21(, and 36( respectively. The standard deviation of the wavelet at the central peak was set to 10. Two different settings were used; One with no depth-to-time error (Bayes 1), and one with depth-to-time error defined by a standard deviation of 5ms and range of 50ms (Bayes 2). For comparison a traditional estimate was computed with the same window length as above (Trad1) and one using longer window lengths of  120ms, 128ms and 144ms (Trad 2). In the Bayesian cases the mean wavelet are used as the estimate in the comparison. In order to have a common reference all estimates were aligned such that the average peak location for all three angles is zero. Figure 2 displays the four different estimates, and the depth-to-time error for the two Bayesian cases. The bulk shift of 2ms for Bayes 1 is caused by the alignment of peak locations; there is no local depth-to-time error for this case. 
We see that all estimates are quite similar, but the energy in the Bayesian estimates is more concentrated in the frequency domain than the traditional estimators. This energy leakage is a bias common for smoothing estimators. The Bayesian approach avoids this since it makes the distributional assumption prior to taking the data into consideration, and allows the data to adjust the relevant frequencies. Allowing for depth-to-time error gives a wavelet with larger amplitude than what is obtained without. This is because the depth-to-time error yields a reduction in the amplitude errors and better alignment of seismic events relative to the well. 

The possibility to assess the full posterior distribution of the wavelet gives more than the fixed estimate, displayed in Figure 2. One can make credibility intervals for the wavelet or for functionals related to the wavelet. It is also possible to sample several wavelets to obtain several plausible realizations of the wavelet; this can be used for testing the robustness of an inversion.
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Figure 2: Estimated wavelet and depth-to-time error.
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