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SUMMARY

A typical workflow for generating flow simulation grids goes through a facies modelling step. This
typically involves setting up a stochastic model that is supposed to capture the important properties of the
facies bodies in the reservoir volume in question and their uncertainties. This may be difficult or
impossible within a particular modelling framework. Either we end up with a model too simple to be able
to reproduce the characteristics of the reservoir, or the model parametres become too many and too
difficult to specify. Hence users ask for methods able to reproduce the properties of a training image
automatically. In any case one would like objective measures of similarity of facies realizations so that one
is able to determine if a set of realizations have the properties that one wants.

Here we discuss possible components in a metric on a space of facies realizations and present an
implementation of a facies realization analyzer program. The algorithm simply scans a number of
realizations and computes the global volume fractions of each facies and the number of facies bodies of
each type. Then it computes the surface areas, volumes, and extensions in each directions for the bodies
and performs simple statistical analysis of the realizations and compare it with properties of a training
image.

We present results of applying this software on facies realizations produced with variogram based
methods, multipoint methods, and sequential Markov random fields.

The analyzer algorithm is fast, applicable in 2D and 3D, and the results are in excellent agreement with the
subjective impression of similarity or dissimilarity obtained through visual inspection.

10™ European Conference on the Mathematics of Oil Recovery — Amsterdam, The Netherlands
4 - 7 September 2006



- ECMOR
A

1. Introduction

Traditional variogram-based techniques have been widely used in the petroleum industry for estimation and simu-
lation of geological and petrophysical property fields. In the general non-stationary case, difficulties in variogram
model selection and parametre estimation represent a serious problem with these methods. In practice therefore,
one restricts oneself to simple stationary variograms, and as a result, it is often felt that these techniques are unable
to represent the complex structures observed in nature.

The raison d’étre of multipoints methods is that they claim to give better representations of complex structures
than is possible with variogram-based (two-point) methods. In addition they are very user friendly since they are
able to make direct use of prior models represented by training images rather than abstract variogram models and
parametres.

Any method able to generate new facies realizations based on a training image would face two challenges. The
first challenge is to capture and represent all essential properties of the training image. The second is to produce
realizations spanning a sufficient volume of realization space with the correct statistics given this representation.

In this paper we focus on the quantification of facies image properties. To this end we have implemented a body
detector and analyzer program (see Algorithm 1 in Appendix A). This program is then applied to two-dimensional
training images of three types and to realizations made by Snesim [1], a sequential indicator simulator, and a
Markov mesh method. The results are compared with the statistics of the training image.

The Snesim algorithm and the sequential indicator simulation are well known
and used by industry. Markov mesh models are not commonly seen in reservoir
modelling, and thus a short presentation is given. Markov mesh models or unilateral
models are well known in the statistical literature [2, 3], and is used in image pro-
cessing [4]. The Markov mesh model operates by a systematic sequential simulation
path running top to down and left to right in the grid. Figure 1 illustrates the situation
at a fixed time in the simulation process. At this time all the cells above the current
cell and all cells to the left of the current cell at the same level have already been
simulated. These are indicated by filled squares in Figure 1. The cells to the right
at the same level and below still remain to be simulated. These cells are indicated
by stapled squares in the figure. The gray cell with the question mark is to be simu-
lated. The probability that this cell is red is dependent only on a limited number of
the previously simulated cells. These cells denote a sequential neighbourhood. An
example of such a set is illustrated in Figure 1 by the cells within the solid black line.
After simulation of the current cell, one steps to the right and repeats the process and
so on. Boundary effects are solved by padding the simulation region. Daly [5] estimates the probabilities from the
frequencies in the training image similar to what is done in Snesim. In the Markov mesh models presented in this
paper the probabilities are estimated from the training image using logistic regression. Functions of the cells in the
sequential neighbourhood are used as explanatory variables and the cell it self as a dependent variable.

From the outset we like to stress that our focus is on the comparison method and not on the simulation methods.
No attempt has been made to manually fine tune parametres of the simulation packages; except for the neigh-
bourhood size we used default values. Hence, the results should not be regarded as test results of the simulation
methods.

Figure 1: Sequential neighbour-
hood.

2. A metric in realization space

The state space of all possible facies realizations on a grid with n cells and f facies is finite with n/ possible states
giving 1/2n/ (nf + 1) metric components. Obviously this is unmanagable.

Instead of a full-fledged realization space metric, we would like to perform a dimensional reduction to a mini-
realization space metric *. Hence instead of pixel-wise comparison we select a few larger-scale criteria each repre-
senting an axis in mini-realization space, and represent realizations as points in this low-dimensional space.

Facies realizations could be compared along a multitude of axes defined by patterns either based on a priori or
on statistical information. In this paper we suggest comparison criteria based on, in principle, observable measures
such as global volume fractions (a measure of abundane), maximal directional extension of facies bodies (a measure
of connectivity), and ratio of surface area to volume (a measure of ruggedness and shape). These criteria are
believed to be the most important for petroleum applications. For realizations with a sufficiently large number of
bodies, one could use statistics of the body measures as comparison criteria. Looking at a training image (TI), we

*This is analogous to the mini-superspace approximation in quantum cosmology.
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Figure 2: A metric in realization space tells us the distance between two realizations or between a training image and the sample
space of a model.

could denote its position in mini-realization space as X (TI). The difference between a realization r and the training
image along the axis X° would then be ‘ ‘ ‘
AXY = XY(TI) — X*(r).

For a given simulation method one could then study the statistics of AX? for a large number of realizations and
hence also be able to say something about the distance between a training image and the sample space of a simula-
tion method.

In principle we could write down a realization metric on the form

No Na

ds* = 3 Gy AX'AX,

i=1 j=1

where G;; a positive definite matrix (diagonal if all criteria are orthogonal), and V., the number of comparison
criteria.

In order for this to make sense, one would first have to establish orthogonal criteria and second be able to
establish to relative importance of each factor. Since the relative importance of the criteria probably are problem-
dependent, we have not attempted to write down an explicit expression for the full metric.

(a) Rugged (b) Channels (c) Ellipsis

Figure 3: Training images at resolution 250 x 250 x 1. The z-direction is horizontal and y is vertical.

3. Tests

We appplied our method to the training images in Figure 3. Interestingly, these three training images have very
similar variograms. The first training image has been generated by the sequential indicator simulation program
Sisim in the open source SGeMS package [6]. To the authors, the parametres used for generating the training image
were unknown. Also, we do not know how the other two training images have been created.

For each of the training images we ran the facies body analyzer to find the following comparison criteria:
(i) the mean value of the area to volume ratio A/V/, (ii) the maximal extensions in z and y directions Max(X ') and
Max(Y'), (iii) the mean volume V/, (iv) the mean area A, (v) the p75 quartile for the x-extension p75(X), (vi) the
number of bodies n, (vii) the global volume fraction p. For each criterium and for each training image we chose
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units so that the training image value is unity for all criteria. With this normalization any set of realizations similar
to the training image should then have comparison criteria values near unity.

Then, using the training images as input we generated 1000 realizations using three different methods: (i) var-
iogram estimation and sequential indicator simulation from a commercial software package [7], (ii) multipoint
statistics as implemented in Snesim from the SGeMS package [6, 1], (iii) the Markov mesh method.

3.1. Rugged body realizations

For this particular training image (3(a)) the variogram-based technique has the advantage of playing on its home
ground. In order to speed up the simulations, the sequential indicator simulation software allows the user to limit the
number of neighbourhood points used in the indicator kriging equations. We used 16 (the default value), 32 and 64
neighbours. Visually the results were similar to the training image in all cases even for the smallest neighbourhood
size. In Figure 4 we present four random images using a neighbourhood size of 32. Increasing to 64 had no effect
on the results.

In Snesim we used a template size of 30, 100, and 400 (the maximum allowed). For the rugged bodies, a
template size of 100 seemed sufficient.

Judged by visual appearance all methods produced results similar to the training image, and it is not easy to say
which set is most similar to it. However, according to our comparison criteria as illustrated in the whisker plots in
Figure 7, the sequential indicator simulation method gave results closest to the training image. Both of the other
two methods produced too many tiny objects giving too many objects in total and consequently also a too small
mean volume of the objects. These methods also were too low on the p75 quartile for the maximal x extension.

For this particular case, the sequential indicator simulations was both faster and more accurate than the multi-
point method in the sense that the resulting realizations were more similar to the training image. This should not
come as a surprise since the training image was generated with a similar tool as the one used here.

3.2. Channel realizations

In this section we look at a training image with a fluvial-like channel structure (Figure 3(b)).

For the variogram-based technique, the channel image was impossible to reproduce’. Results for a neighbour-
hood size of 32 are shown in Figure 8.

Snesim produced channel-like objects even for relatively small template sizes, but to avoid too many dead ends
we had to increase the template size to the maximal allowed value of 400. For this value the results in Figure 9
became rather similar to the training image.

The Markov mesh method produced good channels, however, with a thickness that varies too much.

From the whisker plot in Figure 11(a) the failure of the variogram-based technique is obvious. The other two
methods come out with very similar results. One should perhaps come up with criteria able to detect dead ends and
channel thichness variations to be able to discriminate better between the two.

3.3. Elliptic body realizations

The innocent-looking elliptic bodies (Figure 3(c)) were a challenge for two of the techniques.

Not surprisingly, the variogram-based sequential indicator simulation method failed by producing bodies which
were far too rugged. This is reflected int the whisker plot in Figure 15(a) where the mean ratio of area to volume
comes out far too high.

The multipoint method reproduced the features of the training image quite well; the number of bodies comes
out a little high and the mean ratio of area to volume is on the high side. Increasing the template size from 100 to
the maximal value of 400 only marginally improved these two properties and left the other unchanged.

The Markov mesh method ran into some problems with artifacts such as diagonal striping patterns and a some-
what too pronounced tendency for clumping. Nevertheless, all criteria falls within the uncertainty although the
number of objects is on the low side and the horizontal and vertical connectivities measured by Max(X) and
Max(Y') have too high centers of gravity.

4. Conclusion

We have presented simple critera based on physically measurable quantities for comparison of facies realizations.
In principle, these may be used as components in a metric in realization space, provided one is able to quantify the

TUsing adaptive local anisotropies could improve the situation, c.f. Reference [8]
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Figure 4: Four randomly choosen realizations using sequential indicator simulation with a neighbourhood size of 32.

Figure 5: Four randomly choosen realizations from Snesim with template size of 100.

Figure 6: Four randomly choosen realizations from Markov Mesh simulations with general number of interactions.
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Figure 7: Whisker box plots for 1000 rugged body realizations from each method. The red boxes are at the 0.25 quantile. The
red boxes are at the 0.25 quantile. The plots are scaled so that the value of the training image is unity. Box plots are given for
mean area to volume ratio, maximal body extension in « and y directions, p75 quartile for x-extension, number of bodies, and
global volume fraction.

10" European Conference of the Mathematics of Oil Recovery — Amsterdam, The Netherlands
4 — 7 September 2006



AN HH

Max(X)

+

Max(Y) +|—<
v
A
p75(X)
n 1]

u

(a) Sequential indicator simulation

AN
Max(X)

Max(Y)

<

P75(X)

- ECMOR
A

Figure 8: Four randomly choosen “channel” realizations using sequential indicator simulation with a neighbourhood size of 32.

Figure 9: Four randomly choosen channel realizations from Snesim with template size of 400.

Figure 10: Four randomly choosen channel realizations from Markov mesh simulations.
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Figure 11: Whisker box plots for 1000 channel realizations from each method. The red boxes are at the 0.25 quantile. The red
boxes are at the 0.25 quantile. The plots are scaled so that the value of the training image is unity. Box plots are given for mean
area to volume ratio, maximal body extension in z and y directions, p75 quartile for x-extension, number of bodies, and global

volume fraction.
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Figure 12: Four randomly choosen elliptic body realizations from sequential indicator simulation with neighbourhood size of

32.

Figure 13: Four randomly choosen elliptic body realizations from Snesim with template size of 100.

Figure 14: Four randomly choosen elliptic body realizations from the Markov mesh method.
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Figure 15: Whisker box plots for 1000 elliptic body realizations from each method. The red boxes are at the 0.25 quantile. The
red boxes are at the 0.25 quantile. The plots are scaled so that the value of the training image is unity. Box plots are given for
mean area to volume ratio, maximal body extension in « and y directions, p75 quartile for x-extension, number of bodies, and
global volume fraction.
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relative importance of each criterium and their mutual dependence.

As steps towards a metric in realization space we have tested the critera on three two-dimensional training
images and three different simulation methods. While the comparison critera and the facies body analyzer algorithm
both work in three dimensions, we have choosen to use two-dimensional test cases for the purpose of simple visual
inspection of the results.

Test results show that the suggested critera give a good discrimination among realizations, but also that addi-
tional critera may be required to capture features such as dead end channels and variable thickness channels.
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A. Body finder algorithm

The body definition algorithm is a straightforward labelling method of order n * N2 where N is the number of grid
cells and n is the number of neighbours to each grid cell. It works for any number of dimensions and any grid type.

Algorithm 1 Body identification algorithm

1: Assign a unique body number to each grid cell > Initialization
2: for each cell in grid do
3: for each neighbour of cell do
4 if cell belongs to same body as neighbour then
5: new_body_number +— min(body(cell), body(neighbour))
6: old_body_number « max(body(cell), body(neighbour))
7 if new_body_number < old_body_number then > Update body numbers
8 for each location in grid do
9: if body(location) equals old_body_number then
10: body(location) «<— new_body_number
11: end if
12: end for
13: end if
14: end if
15: end for
16: end for
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