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Abstract

The new generation of open, distributed, object-
based systems poses many new challenges. For eram-
ple, it raises the issue of how the application should be
mapped onto a distributed target platform so that per-
formance and reliability constraints are met. This pa-
per shows how the abstract Engineering Model of ODP,
together with the high-level language SDL, can be used
to achieve system descriptions that are independent
of the concrete platform, despite the implementation-
oriented nature of distribution configuration. A dis-
tribution configuration language and its tool support
are presented. The language today covers static dis-
tribution configuration. Controlling the evolution of
ODP-based systems also requires support for dynamic
reconfiguration, and the paper outlines an approach to
how the language can serve as a basis for further work
in this area.

Keywords: Distribution configuration, configura-
tion languages, distributed targeting, open distributed
Processing.

1 Introduction

The new breed of object-based open architectures [8]
(“middleware”) aims at establishing a uniform view
of a distributed software environment, hiding the het-
erogeneity and the physical location of system enti-
ties (distribution transparency), and defining a uni-
form object model on which the application can be
designed. It is at this level that standards must be
defined to ensure application interoperability, and this
is the goal of the ISO and ITU-T emerging standard
on Open Distributed Processing (ODP) [3], and of
the Object Management Group’s (OMG) architecture
based on an Object Request Broker (CORBA) [9, 10].

While promising to simplify the development and
evolution of large distributed applications, these ar-
chitectures also call for new methods and tools for
managing non-functional requirements, such as perfor-
mance and reliability. The complexity of distributed
architectures complicates this aspect. But as we shall
see in this paper, proper modelling of implementation
structures may give us a useful framework.

Our particular focus is on distribution configura-
tion, which includes the specification of how objects
are assigned to computing nodes and other engineer-
ing structures. This implementation aspect may have
significant impact on the performance and reliability
of the system. We present a notation for expressing
how ODP objects are to be distributed in the network,
and we show how it can be used to achieve platform in-
dependence, despite the implementation-oriented na-
ture of this type of configuration. The current version
of the language is used in conjunction with SDL, the
ITU-T Specification and Description Language. The
notation describes a static configuration, but we also
show how it can serve as a basis for a constraint-
oriented approach to dynamic system reconfiguration.

In Section 2 we first briefly present the ODP En-
gineering Model, on which our work is based. Sec-
tion 3 discusses related work and the kind of distri-
bution support needed for ODP-based systems, and
Section 4 further elaborates on our context. Section 5
presents our main contribution, a language for spec-
ifying distribution configuration. Section 6 discusses
some central issues, and Section 7 concludes the paper.

2 The ODP Engineering Model

The emerging ISO/ITU-T standard for Open Dis-
tributed Processing (ODP) [3] proposes a Computa-
tional Model, an abstract programming model that
defines a conceptual object model that is a central
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Figure 1: ODP Engineering Model concepts.

feature of that standard. In addition, an Engineering
Model is defined that specifies an implementation ar-
chitecture for the Computational Model. It introduces
the following concepts:

e A node is an engineering abstraction of a host
machine.

e A node manager maintains a configuration
database about its node.

e A trader provides a trading space to which server
objects can export interface references and from
which client objects can import those references.

e A nucleus converts a host’s resources to a basic
virtual machine for distributed computing.

e A transparency service enables aspects of distri-
bution to be hidden from application objects.

e A factory service creates capsules containing ap-
plication objects.

e A capsule is the unit of protection and failure.

e A cluster is the unit of activation and migration.

e An object is the unit of encapsulation and distri-
bution.

Figure 1 illustrates the concepts. A capsule is typ-
ically mapped to a process in the underlying operat-
ing system. The cluster provides an intermediate-level
structure that can be used, for example, to group ob-
jects with strong interdependencies, causing them to
be migrated together or to be stored together in a
database. The concept of object is the same in both
the Computational and the Engineering Models, i.e.,
it forms the link between the two models. The task
of engineering in the ODP context thus includes the
task of arranging the application objects in terms of

engineering concepts such as clusters, capsules, and
nodes.

3 Related work

For both parallel and distributed applications, the
way in which they are mapped to the underlying pro-
cessing units has great impact on their performance.
In the case of parallel systems, better performance
is achieved through methods and tools for analyz-
ing the application (in terms of dataflow and -access,
communication pattern, etc.). Based on the results
of the analysis, optimizing compilers, in cooperation
with run-time systems, can achieve improved schedul-
ing and thus better performance. The approaches in
this area are usually dependent on platform architec-
ture, in fact, defining proper architectures is part of
the solution to the problem.

In the case of object-based distributed systems,
such as ODP- or OMG-based applications, the client-
server nature of the model makes the communication
pattern explicit, and the obvious candidates for distri-
bution are the encapsulated objects of the application.
The main task is thus to distribute these objects with
the goal to satisfy the performance constraints put on
the application via, e.g., quality of service (QoS) pa-
rameters. There is at present little integration of QoS
constraints in object-based distributed architectures.
The topic does not seem to be on the agenda of OMG.
QoS is mentioned in the ODP drafts [4, 5], and some
ODP-based work can be found in [11] Part 5. Dis-
tribution support for object-based architectures will
depend on the abstract model used, but one can hope
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Figure 2: The distribution configuration tool chain.

to achieve methods and tools independent of the con-
crete platforms implementing those architectures.

While work on QoS is lacking, there is a body of
work on configuration of distributed systems (see [6]
for a collection of recent reports on this topic). How-
ever, most of this work only deals with the logical
configuration of system components, i.e., it concerns
configuration at the Computational Model level. Dis-
tribution configuration must also handle engineering-
level concerns, such as the specification of physical
distribution of components in the system. This as-
pect becomes more prominent in ODP-based systems,
since the ODP Engineering Model defines comprehen-
sive structuring concepts (see Section 2). The compo-
nents of a distributed application have to be mapped
to the physical nodes of the infrastructure and to be
structured according to these engineering concepts.

Most existing work on configuration of distributed
systems is based on a modules/ports model, where in-
dividual components (modules) are encapsulated and
send and receive messages to and from local ports,
i.e., they have no knowledge of other components in
their environment. This approach leads to a com-
plete separation between programming-in-the-small
and programming-in-the-large. The former may use
any programming language while the latter requires a
special configuration language that interconnects the
modules by binding the ports.

The ODP Computational Model [4, 5] is differ-
ent in that the objects have knowledge (references
to interfaces) of other objects external to them and
communicate with these objects directly by invoking
operations on known interfaces. The acquisition of
an interface reference establishes a potential binding.
Thus, the information comprising the programming-

in-the-large aspects is interspersed among the indi-
vidual components of an ODP application. While
the modules/ports model assumes centralized control,
ODP is based on autonomous objects and distributed
control. This supports openness, and also makes dy-
namic reconfiguration easier.

In summary, we can make the following observa-
tions regarding distribution configuration in ODP:

e Logical composition (programming-in-the-large)
is not the central focus, since this information is
dispersed in the objects.

e The central focus of ODP configuration is the
mapping of computational objects to the engi-
neering infrastructure.

e ODP is strong on modeling open, dynamically re-
configurable systems, but some means is needed
to control this freedom.

These observations form the basis of our work de-
scribed in this paper.

4 Distribution support in SCORE

The RACE II project SCORE,! in which the au-
thors are involved, aims to establish environments for
the creation of new generation telecom services. These
services are distributed applications, and the ODP
framework is a prime target architecture. Hence, the
distribution support developed in the project is ODP-
based, but similar support for, e.g., OMG-based ap-
plications would not be very different.

TRACE Project 2017, Service Creation in an Object-oriented
Reuse Environment.



One of the main formalisms used in SCORE for
system design is SDL, the ITU-T Specification and
Description Language. In particular, the SDL-92 defi-
nition, with its object-oriented extensions, is the focus
of much of the novel work in the project. Since SDL
allows detailed specification of system behaviour, it is
possible to generate code automatically from SDL di-
agrams. SCORE is developing a translator from SDL-
92 to C++. The SDL input to this translator has to
adhere to certain guidelines to narrow the semantic
gap between SDL and ODP ([11] Part 5). The output
code conforms to ODS, a pilot ODP implementation.?

Thus, distribution configuration support developed
in SCORE will have to deal with how to map SDL pro-
cesses (the SDL “objects”) to ODP engineering con-
cepts. We have developed a distribution configuration
language (Sdcl) for expressing this type of informa-
tion, along with tools for mapping an application onto
an ODP-based platform (such as ODS) according to a
Sdcl specification. Figure 2 illustrates the tool chain.

SCORE aims at developing support for multime-
dia services. This type of service implies strict per-
formance and reliability requirements, which are ex-
pressed mainly in terms of different kinds of quality of
service (QoS) constraints [2]. An ideal tool environ-
ment would therefore contain means for deriving Sdcl
configuration descriptions from QoS requirements, as
shown in Figure 2. Similarly, to deliver the required
performance, whenever a system is subjected to dy-
namic reconfiguration, or when the QoS constraints
change, the configuration should be validated against
the QoS constraints.

Translating QoS constraints into an engineering
specification is a complex problem, however, calling
for heuristics and knowledge-based techniques. This
is outside the scope of our work. We have focused on
developing a specification language that can be used
for expressing a distribution configuration, be it gen-
erated by humans or an intelligent front-end tool.

5 An ODP-based distribution configu-
ration language

Distribution configuration deals with how a logical
system structure must be mapped to a corresponding
engineering structure. For example, in SCORE we
would like to map a SDL system specification to the
ODP engineering concepts of nodes, capsules, clusters,

2The Open Distributed Systems platform from BNR Europe
Ltd. Another platform experimented with in SCORE is AN-
SAware from APM Ltd.

and objects.

In this section, we list the main issues of concern,
and we show via examples how our language, Sdcl,
expresses these aspects.

A specification in Sdcl consists of a set of type defi-
nitions and the description of an initial configuration.
The type definitions are based on the engineering con-
cepts, such as capsules and clusters, and the descrip-
tion of the initial configuration assigns instances of the
defined types to explicit physical nodes.

5.1 Type definition

Figure 3 depicts a SDL specification of a system?
consisting of four process types—UT, MT, ST, and
DT—along with their instances user, main, sub, and
dir. There is one instance of each process type, ex-
cept for sub, which may have from initially two up
to five instances. The communication patterns are as
indicated by the arrows.

Figure 4 (a) presents the capsule and cluster types
to be used in the distribution configuration. It also
lists the interfaces that each object class (SDL process
type) supports and also those from other object classes
that it uses (provides and requires). These class
statements provide the link to the SDL specification.
A cluster type is defined in terms of the types of its
constituent objects (SDL process types). A capsule is
in turn defined in terms of the types of the clusters and
objects that it comprises, defining the object classes
that the capsule can support at run-time.

As specified, there are two different capsule types
that can contain instances of type ST'. This can sup-
port, for example, reliability constraints (the capsule
is the ODP unit of failure and protection).

5.2 Initial configuration

Figure 4 (b) shows an initial configuration of the
system in terms of the structure of the nodes compris-
ing it. The system is distributed over two computing
nodes containing three capsules. Concrete instances
of the appropriate types from the SDL specification
are bound to the clusters and capsules. Since sub is a
SDL process set consisting initially of two instances,
we have to specify where each instance is to be lo-
cated. Instances to be created dynamically are not
part of the initial configuration of the system.

The client-server relationships (uses clauses) are
included, since configuration tools may need them.

3Since SDL system and block concepts do not map to engi-
neering structures, we have omitted them from the figure.
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Figure 3: The example SDL-92 system.

These may actually be generated from SDL descrip-
tions. In general, Sdcl code may either be written by
hand, or it may be generated by various tools, such as
a visual programming tool or a constraint resolution
tool.

In addition to the basic structure requirements
specified in Figure 4 (a), there may be many other
engineering aspects we wish to express. We have fo-
cused on the following, depicted in Figure 4 (b):

Location

For each node in the distributed system, it is nec-
essary to explicitly express its location, the concrete
computer in the network on which it shall reside. This
is taken care of by the on <node> construct. All cap-
sules specified within node nodi will run on the given
machine.

Clustering

The cluster is the ODP unit of migration, and it can
therefore be used to specify collocation of objects. In
the example, the main and user objects are assumed
to have close interaction, and they are therefore clus-
tered.

Instantiation vs. binding

When introducing a new system, it might be the case
that instances of the types of some of the components
in the system are already running in the network. An

issue is thus whether to create a new instance of a
component or to use an existing one. If an existing
object is used, there is also a question of whether a
specific instance is desired or any available instance
will do. In Figure 4 (b), the dir object is specified to
exist already, and no instance of this object will there-
fore be created. Instead, its client main will be bound
to an instance already running in the distributed en-
vironment. If there is more than one appropriate in-
stance, one is chosen (by the trader) based on the ad-
ditional information given in the optional with clause,
as shown.

5.3 Further extensions

Our work on distribution configuration is still in
progress, and some of the areas we are currently con-
sidering are described below.

Dynamic reconfiguration

As mentioned above, one way to ensure consistency
in the face of random changes is by constraints. The
initial configuration should satisfy the constraints, and
each change must be checked for consistency.

A Sdcl specification describes the initial configura-
tion of a system. Later reconfigurations may render
the system inconsistent with the description, but the
system may still be valid with respect to the QoS con-
straints imposed on it. Essentially, a reconfiguration
should result in a new Sdcl description that could be



class UT requires MTserver;
class MT requires STserver,
DTserver;

provides MTserver;

class ST provides STserver;
class DT provides DTserver;

cluster cIT is
class MT;
class UT;
end;

capsule capT1 is
cluster clT;
class ST;
end;

capsule capT?2 is

class ST;
end;

(a)

initial
node nodl on "holt.nr.no" is
Capl: capT1]
ClL: T [main: MT; user: UT];
sub: ST
]

end nodl;

node nod2 on "rose.nr.no" is
Cap2: capT2[sub: ST]
end nod2;

exists [
dir: DT with "C=no; O=nr"]
endexists;
endinitial

nod1.Capl.Cl.user uses
nod1.Capl.Cl.main.MTserver;

nod1.Capl.Cl.main uses
nod2.Cap2.sub.STserver;

nod1.Capl.Cl.main uses
dir.DT'server;

(b)

Figure 4: Sdcl code for type definition (a) and initial distribution (b).

checked against the QoS constraints, just as the initial
Sdcl description was (Section 4).

Performing this check may be quite complex. The
QoS requirements on an application are stated at the
Computational Model level, putting constraints on the
computational interfaces of objects (see [11] Part 5 for
an elaboration of this). It would help considerably
if the engineering process could translate these con-
straints to engineering-level constraints, such as where
to locate objects to ensure adequate performance, how
many objects can be allowed on a computing node,
whether to replicate objects for added reliability or
performance, etc. Checking reconfigurations against
these constraints, expressed in terms of the Engineer-
ing Model, may be expected to be relatively simple.

Engineering constraints may conveniently be in-
cluded as an invariant part of the Sdcl specification.
They would take the form of first order logic formulae
and could contain functions such as:

node(x), capsule(x), cluster(x) — The node, cap-
sule, or cluster of an object x.

numcaps(y), numclus(y), numobjs(y) — The
number of capsules, clusters, or objects
in a node or capsule y.

card(z) — The cardinality of a set z of instances
of a given object type.

type(t) — The type of an object t.
A constraint for our example system could be:

cluster(main) = cluster(user)
A node(user) = "holt.nr.no"

AY X,y €sub, x #y : capsule(x) # capsule(y)

The need for constraints checking implies the exis-
tence of management objects that can query the ob-
jects in the system to verify the system state. (The
ODP node manager could serve this purpose.) Tt
also implies that the objects must provide a manage-
ment interface. One interesting approach would be to
generate automatically the management interface and
operations for application objects, and to generate a
management object that could maintain and update a
Sdcl description of the system and periodically check
it against the engineering constraints.

Note that the engineering-level constraints cannot
be expected to be equivalent to the original QoS con-
straints, but they may provide a pragmatic approxi-
mation. There may thus be cases where one has to go
back and check against the QoS constraints.



Groups

A group is a collection of objects that are related to
each other, and that appear to other objects as a single
entity. The relationship among the member objects of
a group reflects its purpose. For example, a replica-
tion group could be used to support reliability and
robustness. To satisfy requirements, the deployment
of a new application may give rise to the creation of
new groups, the inclusion of new member objects into
existing groups, or simply using an existing group. In
the case where groups are not supported by the dis-
tributed environment, the replication of some of the
objects may be required.

Sdcl does not yet include support for groups as
these are not part of the ODP standard (a proposed
framework can be found in [1]), but it is an interesting
topic for future investigation.

6 Discussion

6.1 The role of the ODP Engineering
Model

As we have seen, the distribution configuration
specification determines how the target system is to be
structured in terms of ODP concepts, such as nodes,
capsules, and clusters. It does not, however, have to
determine the mapping of these concepts to a concrete
platform, such as ODS or ANSAware. That step is
taken care of by the translation tools. The ODP Engi-
neering Model provides the abstract model that makes
this platform-independent targeting possible. Without
a target model, such as ODP, platform independence
extends only to the computational model (SDL) level.

6.2 The role of SDL

In the SCORE tool chain (Figure 2), systems are
specified and designed in SDL-92, and C++ code is
automatically derived from the specification. Defining
the application at such a high level is essential for
platform independence. Code may be generated from
the same SDL description for many different target
platforms. Writing object code files in C/C++, on
the other hand, makes platform details visible.

There are other benefits from using a well-defined
high-level language as well. For SDL there exist pow-
erful tools for analysis and simulation of the system.

Note that SDL has many similarities with the mod-
ules/ports model mentioned in Section 3. In fact, SDL

block diagrams can be thought of as a programming-
in-the-large configuration language, with process dia-
grams supplying “object” functionality. Thus, in our
case, SDL takes care of the logical configuration, leav-
ing engineering configuration for Sdcl.

The fact that SDL offers another computational
model than ODP, does, however, result in some
“impedance mismatch” [7]. (One way to model ODP
in SDL is documented in [11] Part 5.) The ideal situa-
tion would be to have a high-level language embodying
the ODP Computational Model, strengthened with
logical composition facilities. Since SDL here is used
as an ersatz ODP CM language, we see that SDL pro-
cess types and instances actually show up in the Sdcl
language, where only ODP interface types and objects
should have been present.

6.3 The telecom context

The work described in this paper is part of a tele-
com project, and a few remarks are in order to put it
in that context.

The above discussion of the relation to QoS require-
ments (Section 5.3) assumes that there is no other
system interfering in the target environment. This is
typically the case in dedicated real-time and control
systems, and even in some business environments. In
telecom, however, a new system (a “service”) is down-
loaded in a network already in operation, and the en-
gineering constraints must therefore take into account
the current state of the network. The management
objects must merge a network state specification with
the engineering constraints when checking for configu-
ration validity. Reconfigurations may actually be per-
formed as a result of changes in the network and with
the goal of maintaining QoS, rather than a desired
modification triggering a QoS check. This adds fur-
ther complexities to the problem of dynamic system
reconfiguration.

In telecom, creation and management of dis-
tributed applications tackle, respectively, the static
phase and the dynamic phase of an application’s life-
time. These domains are not independent of each
other; each relies on information from the other phase.
For example, management activities need to know
about the type of the objects they manage, the logical
structure of the applications, and the constraints gov-
erning the objects and applications. Likewise, the cre-
ation phase, especially during targeting (code genera-
tion and deployment), needs to know about the struc-
ture of the network, the characteristics of its nodes,
etc. Targeting is the activity on the creation side
which handles the transition from the static to the dy-



namic domain, and the work described in this paper
thus supplies a link between these domains.

6.4 Status

As of this writing, a tool for a previous version of
Sdcl has been implemented that transforms a set of
individual object files written for ANSAware (which
is C-based) to capsule files corresponding to the Sdcl
code. It also generates a makefile and startup script.
We will move our work to the ODS platform (C++-
based) and integrate it with the other tools of SCORE.
The work will continue for 1995, and we plan to look
at how dynamic reconfiguration driven by QoS con-
straints can be better supported.

7 Conclusions

This paper has argued that, when developing dis-
tributed applications based on the new generation
object-based open architectures and standards, rigor-
ous support for distribution configuration is needed.
This is necessary for managing the performance re-
quirements on these complex systems, and for reigning
in some of the freedom of, for example, ODP, whose
underlying model is basically anarchist.

To this end, a distribution configuration language
(Sdcl) based on the ODP Engineering Model has been
designed, and we have presented the notation through
an example of its use. When coupled with a high-level
design language, such as SDL, Sdcl allows platform-
independent targeting onto distributed architectures,
thus contributing to the transparency offered by such
architectures.

Sdcl expresses a static system configuration, but we
have shown how it can form the basis of a constraint-
oriented approach to system reconfiguration, and we
have discussed some implications this will have on the
field of system management.
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