
 

 

 

Project Number: AC112 
Project Title: TRUMPET 

 Inter Domain Management with Integrity 

Deliverable Type: I 

CEC Deliverable Number: AC112/GMD/WP3/DS/I/011/C 

Contractual Date of Delivery: September 30th 1998 

Actual Date of Delivery: October 13, 1998 

Date of This Version: October 13, 1998 

Title of Deliverable: Implementation (Final Demonstration) 

Workpackage contributing: WP3 

Nature of the Deliverable: T  

Document Location: Trumpet/deliverable/del11c/d11c_v08.zip 

Authors: Editors: Marcus Wittig, Damien Artiges 

 

Abstract: 

This deliverable describes the final stage of the software implementation in TRUMPET, which was directed 
at the third trial, in October 1998 and the final demonstration of project results. It has served as a baseline 
document for both, the software developers in TRUMPET, and the system’s administrators which needed to 
install and run the software as part of the trials. 

Keyword list: 

TMN, inter-domain management, security, integrity, availability, confidentiality, security measures, security 
profiles, security policies. 

© 1998 by the TRUMPET Consortium  
ASCOM MONETEL, ALCATEL-ISR, BULL ATC, ÉCOLE POLYTECHNIQUE FÉDERALE DE LAUSANNE, GMD-
FOKUS, NORWEGIAN COMPUTING CENTRE , PARIS DATA, SCOTTISH TELECOM, SEMA, TELSCOM, 
UNIVERSITY COLLEGE OF LONDON 

 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

This page intentionally left blank 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

© 1998 Trumpet Consortium  Page I 

Executive Summary 

 

This deliverable describes the final stage of the software implementation in TRUMPET, which was directed 
at the third trial, in October 1998 and the final demonstration of project results. It is based on a updated 
version of D11B, and it includes new sections for the new software components and extensions, which have 
been developed in last year of the project. 

This document has served as a baseline document for both, the software developers in TRUMPET, and the 
system’s administrators which needed to install and run the software as part of the trials. Accordingly this 
deliverable has been organised as a set of handbooks and manuals which describe the various aspects. 
While the configuration and operation manuals describe how to install and run software, the developers 
handbooks address particularly the details of implementation design. Moreover, the security components 
have been described in a separate set of handbooks since the security software and documentation will be 
distributed to other projects such as the ACTS MISA project.  

As part of the implementation design the developer handbooks describe the details of component 
engineering models, APIs and communication interfaces. Thus, these handbooks present a refined view on 
the detailed component design presented in deliverables D8 and D9 [TRUMPET-D8, TRUMPET-D9] and 
describe how the individual components have been mapped onto the selected implementation technologies. 
While these handbooks are in particular addressed to the software developers, the installation and 
operation manuals should help the systems administrator with the installation and execution of the software. 
The latter also includes a description of hardware and software prerequisites for each component so that all 
the information is given which is needed to set-up a site to run the TRUMPET system. 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

Page II  © 1998 Trumpet Consortium 

List of Contributors 
Damien Artiges Ascom Monetel (P01) 

CICA, 229 rte des Cretes 
F-06560 Sophia Antipolis  
France 

tel.:  +33.92.94.22.04 
fax:  +33.92.94.20.20 
email: artiges@ascom.eurecom.fr 

Cyril Autant 
Francois Letort 
 

Alcatel ISR (P02) 
3, rue Ampère 
F-91349 Massy Cedex 
France 

tel.:  +33 1 69 76 24 76 
fax:  +33 1 69 76 25 50 
email: 
 Cyril.Autant@isr.alcatel-alsthom.fr  
 Francois.Letort@isr.alcatel-
alsthom.fr 

Dominique Maillot 
Christiane Pace 

Sema (P03) 
Departement Projects Européens 
3-9 rue Helene Boucher 
F-78280 Guyancourt 
France 

tel.:  +33.1.30.96.42.12 
fax.: +33.1.30.96.44.72 
e-mail: Maillot@sqy.sema.fr 
  pace@sqy.sema.fr 

Shahrzade Mazaher 
Jonn Sketting 

Norwegian Computing Center 
(P08) 
P.O. Box 114 Blindern 
N-0314 Oslo 
Norway 

tel.:  +47.2285.2500 
fax:  +47.2269.7660 
e-mail: Shahrzade.Mazaher@nr.no, 
  Jonn.Skretting@nr.no 

Marcus Wittig 
Oliver Schittko 
 

GMD FOKUS (P09) 
Kaiserin-Augusta-Allee 31 
D-10589 Berlin 
Germany 

tel.:  +49.30.3463.7218 
fax:  +49.30. 3463.8218 
e-mail: Wittig@fokus.gmd.de 
  Schittko@fokus.gmd.de, 

Lionel Sacks 
 

University College London (P10) 
Torrington Place 
London WC1E7JE 
England 

tel.:  +44.1.71.419.3976 
fax:  +44.1.71.388.9307 
e-mail: l.sacks@eleceng.ucl.ac.uk 

George 
Andrianopoulos 

ATC Bull (P12) 
Aharnon 438 str,  
GR 11143 Athens 
Greece 

tel.:  +30.1.2182008-9 
fax:  +30.1.2182010 
e-mail: andriano@01p.gr 

Robert Croke Paris Data 
Technology House, Lissadel Street, 
Salford M6 6AP,  
England 

tel.:  +44 161 278 2555 
fax:  +44 161 278 2506 
email:  rc@parisdata.co.uk 

 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

© 1998 Trumpet Consortium  Page III 

Table of Contents 

1 Introduction ................................................................................................................................................................1 

2 Architecture...............................................................................................................................................................3 
2.1 Management System Architecture.................................................................................................................... 3 
2.2 Security Architecture .......................................................................................................................................... 4 
2.3 High-Level Technology Viewpoint................................................................................................................... 5 

3 Configuration Manual ..............................................................................................................................................8 
3.1 Hardware and Software Prerequisites ............................................................................................................... 8 
3.2 Runtime Package Distribution.......................................................................................................................... 11 
3.3 Development Package Distribution................................................................................................................. 12 

3.3.1 Makefile Configuration ........................................................................................................................ 12 

4 Operation Manual....................................................................................................................................................14 
4.1 Service Management......................................................................................................................................... 14 

4.1.1 CPN User Application.......................................................................................................................... 14 
4.1.2 CPN Server............................................................................................................................................. 19 
4.1.3 VASP Customer Server........................................................................................................................ 22 
4.1.4 VASP Control Server............................................................................................................................ 23 
4.1.5 VASP CORBA/TMN Gateway............................................................................................................ 24 
4.1.6 VASP CMA Management Event Reporting ..................................................................................... 25 
4.1.7 PNO Xuser-Agent................................................................................................................................. 27 
4.1.8 PNO CMA-Based NMS....................................................................................................................... 29 

4.2 Security Management ....................................................................................................................................... 30 
4.2.1 Security Admin Tool............................................................................................................................ 30 
4.2.2 Management of the Security Profiles................................................................................................. 34 
4.2.3 Management of the Authentication Keys ........................................................................................ 37 
4.2.4 Access Control...................................................................................................................................... 41 
4.2.5 Operation of a Certification Authority............................................................................................... 49 
4.2.6 Running the Certificate Directory Server.......................................................................................... 50 
4.2.7 Security Support Object....................................................................................................................... 52 
4.2.8 Secure Management Association ...................................................................................................... 52 
4.2.9 Adapter Object ...................................................................................................................................... 53 
4.2.10 Audit and Alarm.................................................................................................................................... 53 
4.2.11 SELF........................................................................................................................................................ 66 

5 Service Management Developers Manual ...........................................................................................................67 
5.1 CPN User Application....................................................................................................................................... 67 

5.1.1 Engineering Object Model................................................................................................................... 67 
5.1.2 Supported Component Interfaces ...................................................................................................... 68 
5.1.3 Known Bugs.......................................................................................................................................... 69 

5.2 CPN Server.......................................................................................................................................................... 70 
5.2.1 Engineering Object Model................................................................................................................... 70 
5.2.2 Supported Component Interfaces ...................................................................................................... 71 

5.3 VASP Customer Server..................................................................................................................................... 73 
5.3.1 Engineering Object Model................................................................................................................... 73 
5.3.2 Supported Interfaces ............................................................................................................................ 73 
5.3.3 Version, Release history ...................................................................................................................... 78 

5.4 VASP Control Server......................................................................................................................................... 78 
5.4.1 Engineering Object Model................................................................................................................... 78 
5.4.2 Supported Component Interfaces ...................................................................................................... 79 
5.4.3 Version, Release history ...................................................................................................................... 80 

5.5 VASP CORBA/TMN Gateway......................................................................................................................... 80 
5.5.1 Engineering Object Model................................................................................................................... 80 
5.5.2 Supported component interfaces ....................................................................................................... 81 
5.5.3 Version, Release history ...................................................................................................................... 89 

5.6 PNO Xuser-Agent.............................................................................................................................................. 89 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

Page IV  © 1998 Trumpet Consortium 

5.6.1 Engineering Object Model...................................................................................................................89 
5.6.2 Supported component interfaces ........................................................................................................90 
5.6.3 Version, Release history, Known bugs..............................................................................................92 

5.7 PNO CMA-Based NMS.....................................................................................................................................92 
5.7.1 Engineering Object Model...................................................................................................................92 
5.7.2 Supported component interfaces ........................................................................................................95 
5.7.3 Version, Release history .......................................................................................................................96 

5.8 PNO Messaging System Adapter....................................................................................................................96 
5.8.1 Engineering Object Model...................................................................................................................96 
5.8.2 Supported component interfaces ........................................................................................................97 
5.8.3 Version, Release history .......................................................................................................................99 

5.9 VASP and PNO Management Event Reporting.............................................................................................99 
5.9.1 Engineering Object Model...................................................................................................................99 
5.9.2 Supported component interfaces ......................................................................................................101 
5.9.3 Version, Release history .....................................................................................................................102 

6 Security Developers Manual ...............................................................................................................................103 
6.1 Adapter Object..................................................................................................................................................103 

6.1.1 Engineering Object Model.................................................................................................................103 
6.1.2 Supported component interfaces ......................................................................................................108 
6.1.3 Version, Release history, Known bugs............................................................................................127 

6.2 Secure Management Association ..................................................................................................................128 
6.2.1 Engineering Object Model.................................................................................................................128 
6.2.2 Supported component interfaces ......................................................................................................129 
6.2.3 Version, Release history .....................................................................................................................139 

6.3 Security Profile Management..........................................................................................................................140 
6.3.1 Engineering Object Model.................................................................................................................140 
6.3.2 Supported component interfaces ......................................................................................................140 
6.3.3 Version, Release history .....................................................................................................................142 

6.4 Access Control .................................................................................................................................................142 
6.4.1 Engineering Object Model.................................................................................................................142 
6.4.2 Supported component interfaces ......................................................................................................143 
6.4.3 Version, Release history .....................................................................................................................145 

6.5 Security Administration Tool.........................................................................................................................145 
6.5.1 Engineering Object Model.................................................................................................................145 
6.5.2 Supported component interfaces ......................................................................................................146 
6.5.3 Version, Release history, Known bugs............................................................................................148 

6.6 Security Support Object ..................................................................................................................................148 
6.6.1 Engineering Object Model.................................................................................................................148 
6.6.2 Supported component interfaces ......................................................................................................148 
6.6.3 Version, Release history, Known bugs............................................................................................154 

6.7 Audit and Alarm...............................................................................................................................................155 
6.7.1 Engineering Object Model.................................................................................................................155 
6.7.2 Supported component interfaces ......................................................................................................157 
6.7.3 Version, Release history, Known bugs ............................................................................................158 

6.8 SELF....................................................................................................................................................................158 
6.8.1 Engineering Object Model.................................................................................................................158 
6.8.2 Supported component interfaces ......................................................................................................159 
6.8.3 Version, Release history .....................................................................................................................162 

7 References..............................................................................................................................................................163 

8 Acronyms ................................................................................................................................................................164 

 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

© 1998 Trumpet Consortium  Page V 

Table of Figures 
Figure 1: The TRUMPET Reference Architecture ....................................................................................................... 3 
Figure 2: Architecture for a Commercial Management Platform. ............................................................................... 4 
Figure 3: Technologies and Interfaces used in the TRUMPET System................................................................... 6 
Figure 4: Main Window of the CPN User Application ............................................................................................. 16 
Figure 5: Display of Site Details ................................................................................................................................... 17 
Figure 6: Creating Connections.................................................................................................................................... 17 
Figure 7: Dialog Box "Create VPC" .............................................................................................................................. 18 
Figure 8: Dialog Box "Choose an Action".................................................................................................................. 19 
Figure 9: Dialog Box "Select a Connection"............................................................................................................... 19 
Figure 10: Main Window of the Security Admin. Tool............................................................................................. 30 
Figure 11: Window of the Security Profile Manager................................................................................................. 32 
Figure 12: Dialog Box "EFD Management" ................................................................................................................ 33 
Figure 13: Window of the Alarm Viewer..................................................................................................................... 34 
Figure 14: Dialog Box "Log Management"................................................................................................................. 34 
Figure 15: Generic Access Control Architecture ....................................................................................................... 41 
Figure 16: TRUMPET Access Control Architecture ................................................................................................. 42 
Figure 17: Access Control Information - Data Flow.................................................................................................. 42 
Figure 18: File Panel........................................................................................................................................................ 44 
Figure 19: Target Panel.................................................................................................................................................. 45 
Figure 20: Initiator Panel................................................................................................................................................ 45 
Figure 21: Rule Panel...................................................................................................................................................... 46 
Figure 22: Default Rule Panel........................................................................................................................................ 46 
Figure 23: Certification Hierarchy................................................................................................................................. 49 
Figure 24: Certificates Directory Structure.................................................................................................................. 51 
Figure 25 : Auditing on Systems Providing no Logging Capabilities .................................................................... 54 
Figure 26 : Interactions for Security Event Reporting............................................................................................... 55 
Figure 27 : Overview of Alarm Management.............................................................................................................. 57 
Figure 28: Top Level Management Window.............................................................................................................. 61 
Figure 29 : Agent Control Window.............................................................................................................................. 62 
Figure 30 : EFD Construction Window....................................................................................................................... 63 
Figure 31 : Filter Edition Window................................................................................................................................. 64 
Figure 32 : Log Management Control Window.......................................................................................................... 65 
Figure 33 : Alarm Viewer Window................................................................................................................................ 66 
Figure 34: Engineering Object Model of the CPN User Application ...................................................................... 67 
Figure 35: Engineering Object Model of the CPN User Application ...................................................................... 70 
Figure 36: Engineering Object Model of the VASP Customer Server..................................................................... 73 
Figure 37: Engineering Object Model of the VASP Control Server........................................................................ 78 
Figure 38: Engineering Object Model of the VASP CORBA/TMN Gateway ........................................................ 81 
Figure 39: Required and supported interfaces of the VASP CORBA/TMN Gateway.......................................... 81 
Figure 40: Engineering Object Model of the PNO Xuser-Agent ............................................................................. 90 
Figure 41: PNO Domain Architecture with CMA Components ............................................................................... 93 
Figure 42: Inheritance Tree of the MOSE Information Model................................................................................. 94 
Figure 43: Containment Tree of the MOSE Information Model............................................................................... 94 
Figure 44: Trumpet Messaging System....................................................................................................................... 97 
Figure 45 : Creation of EFDs in the CMA Based Messaging System.................................................................. 100 
Figure 46 : CMA Processing of TRUMPET Management Events ........................................................................ 100 
Figure 47: XOM, XMP and MAE............................................................................................................................... 103 
Figure 48: Secured association establishment & release........................................................................................ 105 
Figure 49: Graphical Representation of the Secure Management Association Component............................. 129 
Figure 50: Engineering Object Model of the Access Contro Servicel.................................................................. 143 
Figure 51: SELF Interfaces........................................................................................................................................... 159 
 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

Page VI  © 1998 Trumpet Consortium 

Table of Tables 
Table 1: List of required platforms and packages.......................................................................................................10 
Table 2. Trumpet Security Profiles................................................................................................................................31 
Table 3. Trumpet Security Profiles................................................................................................................................35 
Table 4: Elements of access control rule......................................................................................................................43 
Table 5: M-EVENT-REPORT parameters .....................................................................................................................98 
Table 6 : ACSE Functions............................................................................................................................................104 
Table 7 : ACSE-related Adapter functions................................................................................................................105 
Table 8 : XMP functions supporting CMIS services...............................................................................................106 
Table 9 : CMIS-related Adapter functions ................................................................................................................106 
 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

© 1998 Trumpet Consortium  Page 1 

1 INTRODUCTION 
The TRUMPET secure inter-domain service management systems have been developed as part of the 
activities in Work Package 3, which is responsible for the architectural design, the definition of test 
scenarios, and the implementation of the TRUMPET system. To validate the results of the design and 
implementation work, the TRUMPET system has been executed and tested as part of trials in which real 
users work in a TMN multi-domain environment established by National Hosts. This deliverable describes 
the final stage of the software implementation, which was directed at the third TRUMPET trial, in October 
1998 and the final demonstration of project results. It is based on a updated version of D11B [TRUMPET-
D11B], and it includes new sections for the new software components and extensions, which have been 
developed in last year of the project. These achievements can be summarised as follows. 

• The Secure Management Package, which comprises the security components developed by TRUMPET, 
was further developed. Support for access control to managed objects, data Integrity, and confidentiality 
were implemented and evaluated throughout the UK trial.  

• To secure the management interfaces between the Java-based management systems a Secure Socket 
Layer implementation was integrated with Java communications infrastructure. For the interaction 
between the TRUMPET CPN and VASP management system this solution provides support for strong 
mutual peer-entity authentication, data integrity and confidentiality. 

• A Java-based Security Administration Tool has been developed which allows for the configuration of 
the Secure Management Package and the monitoring of Security Alarms generated by a secured 
management system. The tool provides a graphical user interface to manipulate security profiles and 
access control rules, and it provides an event display for security events and alarms.  

• To improve the security solutions suggested by TRUMPET with respect to external access of customers 
to the service provider management system a mobile Personal Security Environment has been integrated. 
This technology allows to authenticate customers using smart card technology independently from the 
terminal location or the end user application.  

• To be able to visualise the complex system interactions and to monitor internal events, a graphical Event 
Trace System (Messaging System) was developed. This tool was used successfully as part of the public 
demonstration at IS&N'98, and it also turned out to be of added value for the operation of the UK trial. 

• To meet the requirements of the UK and French trials additional management functions were 
implemented for the configuration management of the end-to-end broadband connections. This included 
the release of virtual path connections as well as the provisioning of status information and event 
reporting on VP connections. Accordingly the CPN user interface has been extended to visualise 
connection status information and to display event reports messages received. Besides this, the CPN 
user interface has been extended to manipulate site data which is kept as part of the network topology 
map display. This allowed to adapt the CPN user interface more easily to the network topology used for 
the UK & French trials. 

• Significant efforts have been undertaken to stabilise all software components and to simplify the 
installation and configuration of the software. To detect and fix bugs advanced debugging tools have 
been used as well as the feedback gained from the testing activities as part of the trial operations. For the 
installation of the TRUMPET software on the UK trial sites a runtime package distribution has been 
compiled which included a system setup script and the start-up scripts for applications and services. As 
compared to the preparation of the Swiss Trial this helped a lot to reduce the efforts required to install 
and configure the TRUMPET software on the trial sites for the Scottish & French trial. 

This document is intended to serve as a baseline document for both, the software developers in TRUMPET, 
and the system’s administrators which need to install and run the software as part of the TRUMPET trials. 
Accordingly this deliverable has been organised as a set of handbooks and manuals which describe the 
various aspects. As part of the implementation design the developer handbooks describe the details of 
component engineering models, APIs and communication interfaces. Thus, these handbooks present a 
refined view on the detailed component design presented in deliverables D8 and D9 [TRUMPET-D8, 
TRUMPET-D9] and describe how the individual components have been mapped onto the selected 
implementation technologies. While these handbooks are in particular addressed to the software 
developers, the installation and operation manuals should help the systems administrator with the 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

Page 2  © 1998 Trumpet Consortium 

installation and execution of the software. The latter also includes a description of hardware and software 
prerequisites for each component so that all the information is given which is needed to set-up a site to run 
the TRUMPET system. 

The structure of the document is as follows: The following chapter gives an overview on the TRUMPET 
management architecture, the security architecture, and the technology environment. Chapter 3 describes 
the installation and configuration of the software distribution packages which have been compiled by 
TRUMPET. Following this, chapter 4 is directed at, both system administrators and operators. It describes 
the configuration and operation of the various applications and components of the TRUMPET system. 
Chapters 5 and 6 contain the developers handbooks for the service management system and security 
components. Finally, the list of references can be found in Chapter 7. A list of acronyms is included in 
Annex A. 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

© 1998 Trumpet Consortium  Page 3 

2 ARCHITECTURE 

2.1 Management System Architecture  

The TRUMPET project investigates security of management communications and operational interfaces 
within the context of inter-operation between several players involved in broadband provisioning. A model 
service management scenario has been developed in which to explore these issues. The scenario shown in 
Figure 1 is of a number of public network operators (PNO) co-operating and competing in the provisioning 
of semi-permanent Virtual Path Connections (VPC) between Customer Private Networks (CPN) across 
international - and within national - domains [TRUMPET-D6]. The network operators are considered to be 
owners of networking systems including transmission connections and switching equipment. In addition we 
consider the role of an organisation who doesn’t own any network systems but works with the public 
network operators to sell on network services and who is licensed for value added resale (VASP). This 
player presents a ‘one stop shopping’ facility for the corporate VPN use.  

Customers see an end-to-end connection and are not necessarily aware of which PNOs are contributing to 
establish the connection. In contrast to this a VASP sees a end-to-end connection as a set of segments, 
each supported by a different PNO, but does not know how each segment has been set up within the 
corresponding PNO (i.e., what ATM switches are used). The essential interactions between the three 
players is considered to be facilitated by TMN based management information exchange. Thus the 
management systems of the players mentioned above form a service provisioning system for management 
and provision of broadband (ATM) network connections between two customers/end users. CPN is a 
dedicated service in the customer organisation, which already has a contract with the VASP. The VASP 
management system provides network connectivity to customers by utilising the resources of one or more 
PNOs. VASP allows customers to create, modify and delete connections, thus effectively providing the 
Virtual Private Network (VPN) service to the customers. PNOs provide the physical infrastructure, i.e. the 
network, and the adequate management interface to interact with it. 

CPN
OS

PNO A PNO B

VASP

Customer Premises Network 1

Customer Premises Network 2

CPN
OS

Xuser’’
Xuser’

Xuser’

XcoopPNO
OS

VASP
OS

PNO
OS

Xuser’’
Customer1 / end-user

Customer2 / end-user

 

Figure 1: The TRUMPET Reference Architecture 

This scenario thus presents a reasonable view of emerging service provisioning and market players. Within 
this context the needs for high integrity and secure management information exchange between the players 
can also be clearly seen. That each player must have publicly  accessible data network interconnections 
there is a clear exposure of both the data in transit and the accessibility of operational interfaces. Further, 
the management platforms employed by each player cannot be restricted to that of any individual vendor. 
Thus there is also a demand for understanding the robustness impacts of the inter-working of different 
technologies. The exposure of data and interfaces points to the need for data encryption and integrity 
requirements for data in transit; the exposure of the interfaces requires access control. Both these security 
requirements imply that the organisations can exchange security information such as public keys, private 
keys and access rights. These concerns are the principle focus of the implementation of the security 
elements of TRUMPET. These security functions are, moreover, explored in the kinds of technology – both 
apparent and emerging – which can be used of open service provisioning. The functional requirements on 
the reference architecture are: 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

Page 4  © 1998 Trumpet Consortium 

• VASP receives requests for services from a customer across a TMN like interface Xuser’’. These 
requests concern the establishment of inter-domain connections between two customers. The 
requirement placed on the VASP consists in finding the best solutions to connect the two customers, 
taking into account the requirements concerning the connection (Quality of Service, bandwidth...), the 
physical resources available in the PNO domains, and optional criteria related to financial costs. 

• PNO provides the physical infrastructure, i.e. the networks. It has a contract with the VASP, which 
knows the entry points of the PNO. During the establishment of the connection, a negotiation takes 
place between the PNO and the VASP (via the Xuser’ interface) to reach an agreement for an offer from 
the PNO which corresponds to the VASP requests. 

• Customer is the end-point of the connection. Essentially, two kinds of customer will be considered, 
although here they have been merged in a single entity. The customer/end-user is the user of the 
application requiring the connection. The customer/network (CPN) is the organisation which will send 
the connection request to the VASP. It usually is a dedicated service in the customer organisation, who 
has already subscribed a contract with the VASP. 

2.2 Security Architecture 

The security architecture consists of a set of security components, which can be used by TMN platforms 
with open or closed protocol stacks. The distinction is described as: 
• For a research management platform, the internals of the protocol stack can be accessed for additions 

and modifications. In this case, TRUMPET suggests use of the Generic Upper Layer Security (GULS) 
specifications and the Transport Layer Security Protocol (TLSP). 

• For a commercial management platform, security features can only be added on top of the interface to the 
protocol stack, i.e. over CMISE or ACSE. Data integrity, confidentiality and non-repudiation are 
especially difficult to implement if the protocol stack is not accessible. 

Since TRUMPET has selected a commercial TMN platform for implementation, only the commercial platform 
architecture has been further developed into component specifications, and is presented here. However, the 
security architecture is  designed to be as generic as possible by insulating the security-relevant code from 
the actual environment through an integration layer. Therefore, the applicability of the TRUMPET security 
architecture to other management environments (open protocol stack, WBEM) should be straightforward. 

TRUMPET’s security policies are based on the use of public key mechanisms for authentication and 
prescribes the use of Trusted Third Parties (TTP) in the role of Certification Authorities (CA). Symmetric 
encryption is used for confidentiality and data integrity protection. 

The architecture is shown in Figure 2, with dashed lines indicating the components added by TRUMPET, 
and solid lines indicating existing components. 

Connection
management
application

SSO

MIB handler

CMISE

OSI stack

ACSE

GSS-API

AccessControl

SMIB

SecAudit

SMASA
d
a
p
t
e
r

Management API

 

Figure 2: Architecture for a Commercial Management Platform. 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

© 1998 Trumpet Consortium  Page 5 

This security architecture aims at securing communications between a Management Application Entity 
(MAE) belonging to a domain and another MAE belonging to another domain. Different MAEs within a 
domain may use different security profiles, and the choice of security profile is made during the initialisation 
of the security context. Selection of a security profile may be constrained by the mechanisms supported by 
an implementation, by internal policies, or by target OS policies. The architecture must support all security 
profiles because it is not a priori possible to determine which security policies that will be applied to a 
particular X interface. However, some policy decisions inherently affect the architecture, like the decision to 
use public key cryptography. 

When a MAE belonging to the initiator OS performs inter-domain management operations, it may be 
working on behalf of another entity (a human user or another MAE) or on its own behalf. To preserve 
privacy of users, and to facilitate management of access privileges (authorisation), the MAE will always use 
its own identity and associated set of privileges to perform the management operations on the target OS. 
This implies that proper internal security measures must be enforced before human operators or MAEs are 
given access to the management capabilities of MAEs that perform inter-domain management. 

To be as independent as possible from the management application and its environments, the security 
components are accessed through an Adapter component. Ideally, the interfaces provided by the Adapter 
to the application should be identical to the interfaces the application uses for access to the communication 
services. Alternatively, a defined interface (like the Generic Security Service API (GSS-API) [RFC 1508]) 
could be offered from the security components, in which case the applications must incorporate this 
interface, and perform necessary transformations on the data passed over the interface. 

To achieve a high degree of flexibility to particular security mechanisms, the architecture is based on the 
GSS-API. The GSS-API interfaces to a Security Support Object (SSO) used to establish a security context 
between the communication parties and to perform security transformations on the application data. 

With respect to a commercial management platform, there is some minimal support required for the transfer 
of security data between communicating parties. The specific requirements that must be satisfied are: 
• The authentication field of ACSE must be supported to establish the security context and for 

authentication; 
• The access control field of CMIS management operations must be supported to transfer security related 

information. 

The security architecture also requires that agents have control over accesses to the MIB. This is necessary 
to enforce access control to MOs. Although TRUMPET is responsible for the implementation of agents, 
their design may be restricted by tools provided by the platform provider. For example, the code generated 
by a GDMO compiler may not be compatible with the introduction of access control mechanisms. 

The architecture shown in Figure 2 is able to support most of the security services required by the 
TRUMPET policies. The security services that cannot be fully supported are integrity, confidentiality, non-
repudiation and security negotiations. 

When encryption for confidentiality is performed above CMISE, the encrypted data must be inserted into 
one of the fields of the particular CMIS operation being requested. However, most of the fields have specific 
pre-defined types that cannot accommodate an encrypted data type. In general, the only exception, and the 
only fields that can be encrypted, are the fields used to carry the attribute values to and from the target MIB. 

2.3 High-Level Technology Viewpoint 

This section presents the choices for implementation technologies used in the system as described in the 
previous sections, at a global or high level. These choices have been made so as to cover a number of 
requirements derived from the project goals and demands from the trials scenarios. As shown in the figure 
below, the system has used a mixture of techniques. The CPN and most of the VASP have been implemented 
using Java. The motivation for this are two fold. The CPN site was specified to be very versatile. Thus using 
Java would allow the CPN to interface the VASP interface with almost any in house tools required. The 
second motivation was to be able to extend the TRUMPET security architecture to other underlying 
technologies - particularly important in view of the attitude of NM Forum that TMN must be supported by 
more than only CMIP. To allow these things to be fully supported the VASP supports a managed object 
model close to that required for TMN. This is achieved by using a reliable object communications and object 
persistence technology (the Voyager package) and by locating the objects with in a X.500 naming structure 
supported by the Lightweight Directory Access Protocol (LDAP). The communications between the VASP 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

Page 6  © 1998 Trumpet Consortium 

and the PNOs are supported by a CORBA based Xuser gateway. This innovation has three important 
aspects.  

The PNO itself supports the Xuser’ interface compatible with that defined by the MISA consortium and 
derived from that developed in EURESCOM P408. Thus this interface should be fully compatible with any 
TRUMPET / MISA trials foreseen. Finally, the network and network element support is achieved by an 
underlying implementation of the ATM Forum M4 interface. 

GUI
HTML +
Java

CPN Info
Access

VASP:
Java

TTP:
JLDAP

Comms

Voyager
RMI
SSL

Comms

Voyager
RMI
SSL

MO
support

Java

MIB
JLDAP
LDAP
(JDB)

Control
Server
Java

PNO SL

HPOV

PNO NL
(NEL)
M4

Xuser/
CMIP

NEL
SNMP

TTP
LDAP
X.500

CPN VASP

PNO

EI1

EI2.1

EI3

EI4

Server
Gateway
CORBA
HPOV

EI2.2

 

Figure 3: Technologies and Interfaces used in the TRUMPET System 

There are four major sites, each with specific communication needs the; CPN, VASP, PNOs, TTP. These are 
communication interfaces external to each domain and are labelled EI1-4. Although the components within 
each site also have inter process communications, these are not highly problematic and need not be 
considered in detail here. The communications channels considered are those which concern inter-domain 
security.  

Key to Figure 3: 

CORBA: Common Object Request Broker. An Object Oriented RPC like system suitable for building 
distributed systems over heterogeneous systems. 

LDAP: Light weight Directory Access Protocol. A slimmed down implementation of X.500. 

JLDAP: A Java API to LDAP 

HTML: Hyper-Text Mark-up Language. A specialisation of SGML, adding functionality for linking 
material together in a networked environment (although loosing much of the type setting and 
document data base functionality of SGML). 

Java: A trendy programming language plus a set of libraries suitable for building distributed systems 
and (light weight) user interfaces. Cross platform portability is provided by defining a Virtual 
Machine operating environment, rather than by forcing cross platform development in all 
environments and the utilisation of platform independent communications (e.g. CORBA or 
CMISE) 

SNMP: Simple Network Management Protocol. For internet based network elements. 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

© 1998 Trumpet Consortium  Page 7 

RMI: Remote Method Invocation. The low-level functionality for Java communications, in addition to 
pipes and sockets. 

Voyager: A product which extends / completes Java communications to cover full functionality of such 
things as synchronous & asynchronous communications. 

SSL: Secure Sockets Layer. A facility in Java for adding confidentiality, integrity and authentication to 
the classic socket and pipe communication model. 

M4: A OSI management interface at the network and network element level defined by the ATMForum 
for ATM network management. 

TTP: Is the trusted third party. 

Summary of External Interfaces: 

EI1:  Between the Customer Premises and the VASP (customer) server. Using Java facilities. Low-level 
over IP (backbone or over ISDN) , High level protocol to support object reference model as 
supported by LDAP. 

EI2:  Between clients and TTP site. There are alternatives here supported by SecuDE; LDAP access 
over IP or (full) X.500. 

EI3:  Between VASP Control server and PNO sites. Xuser over CMIP. Requires Java to CMIP gateway 
to be supported via CORBA. 

EI4:  From Network Elements Adapters to network elements. SNMP over IP. 

 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

Page 8  © 1998 Trumpet Consortium 

3 CONFIGURATION MANUAL 
This manual gives general information on how the TRUMPET software is going to be installed on a 
computer system. Two distribution packages have been compiled which include all the applications and 
software components developed by TRUMPET: 

• The runtime package distribution only contains the executable code such as binary code, byte code for 
Java applications, and executable shell scripts to start applications and communication services. This 
package has been used by TRUMPET to install the software on the trial sites as part of the UK and 
French trials.  

• The developers package distribution contains both executables and the full source code of TRUMPET 
development including supplementary documentation and configuration files to build the software.  

The following Section 3.1 describes the hardware and software prerequisites which must be met to install 
and run the TRUMPET software. Following this, Section 3.2 describes the runtime package distribution and 
Section 3.3 describes the development package distribution.  

3.1 Hardware and Software Prerequisites 

The TRUMPET software has been developed and tested on the following system environments: 

• Hewlett-Packard, Inc. PA workstations with HP-UX 10.x operating system 

• Sun Microsystems, Inc. SPARC workstations with Sun Solaris 2.x 

Additionally, the components of the Secure Management Package excluding the XMP adapter have been 
ported to Microsoft Windows NT version 4.0. As the TRUMPET software has been engineered for 
portability, it is expected that adaptation to other operating systems with POSIX compliant APIs can be 
achieved easily. Beyond this, some parts of the TRUMPET software have been developed with the Java 
Developers Kit (JDK, Sun Microsystems, Inc.) which provides an abstraction from the underlying hardware 
and operating system. It is expected that Java applications can run on any system environment which is 
supported by JDK.  

The following table gives an overview on the software packages which are required to run the TRUMPET 
system. For each software package, the TRUMPET applications and subsystems which rely on it are 
indicated. Moreover, the availability of package is highlighted for system environments used by TRUMPET 
and the dependencies on other software packages is indicated. 

 
Vendor/Package Required for Availability and 

Dependencies 
Description/Comments 

Sun Microsystems, Inc. 
JRE/JDK 1.1.4 (or higher) 

CPN User App., 
CPN Server, 
VASP Customer Server, 
VASP Control Server,  
Security Admin. Tool, 
and CMA Messaging 
System Adapter  

Solaris 2.x 
Windows 95/NT 
HP/UX 10.x 

Java Development (JDK) and 
Runtime (JRE) toolkit, JRE is a 
subset of JDK including the 
JAVA libraries and the virtual 
machine to run Java Applications. 
NOTE: JDK for HP/UX is 
provided by Hewlett-Packard. 

Netscape Navigator 4 or 
Netscape Communicator 4 
or 
Microsoft  Internet 
Explorer 4.0 

CPN User App., 
Security Admin. Tool, 
and for online 
documentation 

Solaris 2.x 
Windows 95/NT 
HP/UX 10.x 
(Internet Explorer is 
not available for 
HP/UX 10.x, for 
Solaris 2.5 only a beta 
version is available to 
date) 

A web browser which provides 
the execution environment to 
download and run Java Applets. 
NOTE: This is optional since the 
applet can also be executed with 
the appletviewer which is included 
in the JRE/JDK pakage 

Objectspace 
Voyager 1.0.0 

CPN Server, and 
VASP Customer Server 

100% pure JAVA  
(requires JRE/JDK 
1.1.x) 

Voyager is a Java-centric 
distributed computing platform 
supporting transparent access to 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

© 1998 Trumpet Consortium  Page 9 

remote objects and facilitates 
object mobility.  

Objectspace 
JGL 2.0.2 

CPN Server, and 
VASP Customer Server 

100% pure JAVA 
(requires JRE/JDK 
1.1.x) 

JGL includes 11 optimized data 
structures including sequential 
containers, sets, maps, and 
queues. Both ordered and hashing 
versions of sets and maps are 
available.  
NOTE: Support for object 
persistence is only provided using 
JRE/JDK 1.1. 

IAIK-JCE 2.0 and 
IAIK iSaSiLk 2.0 

CPN Server, and 
VASP Customer Server 

100% JAVA based 
(requires JRE/JDK 
1.1.x) 

Java Cryptography Extension and 
SSL Implementation 

Netscape 
LDAP Java SDK 1.0 

CPN Server, and 
VASP Customer Server 

100% JAVA based 
(requires JRE/JDK 
1.1.x) 

Java toolkit to build applications 
that access networked directory 
data through the Internet standard 
Lightweight Directory Access 
Protocol (LDAP, RFC 1777). 
Constitutes a subset of the 
Netscape Directory SDK.  

IONA 
Orbix 2.3 /C++ 
(Multi Threaded version) 

VASP CORBA/TMN 
Gateway, and 
CMA Messaging 
System Adapter 

Solaris 2.x 
(requires SunWSpro 
Compiler 4.x for to 
build executables) 
Hewlett-Packard 
HP/UX 10.x 
(reqs HP aC++ 
Compiler) 

OMG CORBA 2 compliant C++ 
ORB, required for CORBA-based 
client/server applications, 
Runtime & Developers Licenses 
are available. 

IONA 
OrbixWeb for Java 2.x 

VASP Control Server & 
Event Handler of the 
control server) 
  

Solaris 2.x 
Windows 95/NT 
HP/UX 10.x 
(requires. JRE/JDK 
1.0.2 or higher) 

OMG CORBA 2 compliant Java 
ORB, Required for generation of 
the stubs used by the VASP 
Control Server to access the 
VASP CORBA/TMN gateway, 
Runtime & Developers Licenses 
are available. 
NOTE: Not required for a 
TRUMPET runtime installation, 
as the OrbixWeb class library is 
included in the TRUMPET 
distribution packages. 

Netscape 
Directory Services 3.0 

CPN Server, and 
VASP Customer Server 

Solaris 2.x Windows 
95/NT 
HP/UX 10.x 

Directory Service implementation 
(X.500 based) supporting LDAP 
version 2 and 3.  
NOTE: This package includes the 
Netscape Directory SDK which in 
turn includes LDAP Java SDK 
1.0beta 2.  

University of Michigan 
Michigan LDAP library 

Certification Authority, 
SMP 

Solaris 2.x Windows 
95/NT   
HP/UX 10.x 

Various LDAP tools which have 
been developed at UMich. Needs 
to be in place to operate an CA.  
Pointers to LDAP-related sources 
can also be found at 
reference.com. 

Rogue Wave 
tools.h++ 7.x 

potentially all 
components developed 

Solaris 2.x 
Windows 95/NT 

C++ foundation class library 
contains over 120 classes, 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

Page 10  © 1998 Trumpet Consortium 

with C++, i.e., SMP 
components, and 
VASP CORBA/TMN 
gateway 

HP/UX 10.x including dates, times and strings, 
sets, bags, B-Trees, sorted 
collections, linked lists, queues, 
stacks, and more  
This library is bundled with 
SunWSpro C++ and the HP aC++ 
compilers. 

Sun Microsystems, Inc. 
Workshop pro C/C++ 
compiler 4.2 

all components 
developed with C/C++, 
i.e., SMP components, 
VASP CORBA/TMN 
gateway, and  
PNO Xuser Agent, 

Solaris 2.x SUN ANSI C/C++ Compiler, 
Linker and Libraries (includes 
Rogue Wave tools.h++ 7.0), 
Contact and price info. can be 
obtained through SunExpress 

Hewlett-Packard 
HP aC++ for HP/UX-10 

all components 
developed with C/C++, 
i.e., SMP components, 
VASP CORBA/TMN 
gateway, and  
PNO Xuser Agent, 

HP/UX 10.x HP ANSI C/C++ Compiler, 
Linker, and Libraries (includes 
C++ standard lib and Rogue Wave 
tools.h++ 7.0),  
NOTE: HP offers another 
Compiler (Cfront) called C++ 3.0 
or CSET which is NOT suitable 
since there is no proper support 
for Orbix, and limitations for 
library support such as 
tools.h++!!! 

Hewlett-Packard 
OpenView Distributed 
Management version 4.21 
or 5.01 (Manager/Agent 
platform) 

VASP CORBA/TMN 
Gateway,  
PNO Xuser Agent, and 
PNO NMS 

Solaris 2.x, 
HP/UX 10.x 

Distributed management platform 
providing the infrastructure to 
develop and operate TMN 
management applications. 

Hewlett-Packard  
Cumulative Consolidated 
Patch PSOV_01730 for 
HPOV-DM 4.21 on 
Solaris 2.x 

VASP CORBA/TMN 
Gateway,  
PNO Xuser Agent, and 
PNO NMS 

Solaris 2.x Cumulative Consolidated Patch 
for HPOV-DM 4.21 on HP/UX 
10.x. The patch is required to run 
the VASP CORBA/TMN 
gateway and the PNO Xuser 
Agent. The patch can be obtained 
from HP Support web site. 

Hewlett-Packard  
Cumulative Consolidated 
Patch PSOV_12211 for 
HPOV-DM 4.21 on 
HP/UX 10.x 

VASP CORBA/TMN 
Gateway,  
PNO Xuser Agent, and 
PNO NMS 

HP/UX 10.x Cumulative Consolidated Patch 
for HPOV-DM 4.21 on HP/UX 
10.x. The patch is required to run 
the VASP CORBA/TMN 
gateway and the PNO Xuser 
Agent. The patch can be obtained 
from HP Support web site. 

Fore Systems 
ForeThought 4.02 

PNO NMS FORE ASX200 
(embedded Sun Solaris 
system) 

ATM Networking Software 
which also provides the SNMP 
management interfaces (MIBs) 
required for the NMS 

Table 1: List of required platforms and packages 

To simp lify the configuration of the TRUMPET software, all packages should be installed in a common 
directory called "Pkgs". This directory needs to be created subordinate to the directory where the 
TRUMPET software is going to be installed. If some of the packages have been installed already in different 
directories it is sufficient to set symbolic links from the "Pkgs" directory to the installation directories. To 
run the TRUMPET software without major changes of the configuration files, the "Pkgs" directory should 
contain the following files (directories or symbolic links):  

 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

© 1998 Trumpet Consortium  Page 11 

LDAP    University of Michigan LDAP library 
ORBXns1.03   IONA Naming Service version 1.03 for Orbix 
Orbix_2.3MT   IONA Orbix verion 2.3MT 
SSL    IAIK iSaSiLk 2.0a and IAIK-JCE 2.0 
jdk1.1.4   SUN Java JDK version 1.1.4 
jgl_2_0   Objectspace JGL 2.0.2 
ldapjdk-unix  Netscape LDAP Java SDK 1.0 
rw7    RogueWave Tools.h++ version 7.00 
sec51c   Secude GmbH, Secude version 5.1 
voyager1.0.1  Objectspace Voyager 1.0 
OV    Hewlet Packard OpenView DM version 4.21 or 5.01 

3.2 Runtime Package Distribution 

The runtime package distribution only contains the executable code such as binary code, byte code for Java 
applications, and executable shell scripts to start applications and communication services. It is distributed 
as a single file called "trumpet_RT.tar" which has been created using the UNIX tape archive format. This 
archive needs to be unpacked in the directory  where the TRUMPET software is going to be installed. To 
extract files from the archive apply the tar user command provided on UNIX systems:  

• tar -xvf trumpet_RT.tar 

As a result a new directory called "Trumpet.RT" has been created in the current directory. The detailed 
directory structure is described below. 

 
Trumpet.RT  Top-level diretory 
 /bin   Executable shell scripts to run TRUMPET 
    applications and services 
 /bin_hp  Binary executables for HP-UX 9 
 /bin_sun5  Binary executables for SUN/SPARC Solaris 2.5 
 /classes  Class files (bytecode) for JAVA applications  
 /data   Initialization and data files for TRUMPET  
    applications 
 /etc   Configuration files for TRUMPET application 
 /lib   Shared objects for HP-UX 10 and  
    SUN/SPARC Solaris 2.5 

To complete the installation three system environment variables need to be set: 

• HOME 

The absolute path name of the home directory for the user account on which the TRUMPET software is 
being installed. Usually this variable is set already for the system environment.  

• TRUMPET_HOME 

The absolute path name of the directory where the "Trumpet.RT" and the "Pkgs" directories can be 
found.  

• SYSTEM 

The system identification. Possible values are "sun5" or "hp".  



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

Page 12  © 1998 Trumpet Consortium 

3.3 Development Package Distribution 

The development package distribution provides the full set of implementation files including the source and 
binary code files for the various applications developed by TRUMPET. It is distributed as a single file called 
"trumpet_dev.tar" which has been created using the UNIX tape archive format. This archive needs to be 
unpacked in the directory  where the TRUMPET software is going to be installed. To extract files from the 
archive use the tar user command provided on UNIX systems:  

• tar -xvf trumpet_dev.tar 

As a result a new directory called "Trumpet.dev" has been created in the current directory. The detailed 
directory structure is described below. 

 
Trumpet.dev   Top-level directory 
 /bin    Executables 
  /scripts   Executable shell scripts 
 /doc    Online-documentation for TRUMPET software 
 /etc    Configuration files 
 /javacode   Java class files 
 /src    Source code directory 
  /cpn    CPN applications directory 
   /cpn    CPN Server application 
   /gui    CPN GUI applet 
  /corbaGateway  CORBA/TMN static gateway 
  /vasp    VASP applications directory 
   /controlServer  VASP Control Server 
   /customerServer  VASP Customer Server 
   /vaspTypes   Common files 
  /securityPackage  SMP components directory 
   /acControl   Access control component 
   /manager   Audit & Alarm manager 
   /self    Audit & Alarm agent 
   /sso    SSO component 
   /smasc   SMASC component 
   /xmpV7_adapter  XMP-Adapter implementation 

  /xuser   Source code of the Xuser-Agent 

To complete the installation three system environment variables need to be set: 

• HOME 

The absolute path name of the home directory for the user account on which the TRUMPET software is 
being installed. Usually this variable is set already for the system environment.  

• TRUMPET_HOME 

The absolute path name of the directory where the "Trumpet.dev" and the "Pkgs" directories can be 
found.  

• SYSTEM 

The system identification. Possible values are "sun5" or "hp".  

3.3.1 Makefile Configuration 

To simplify the use of makefiles to build the TRUMPET software, a set of rules and macros have been 
defined. These definitions can be found in the following files which are located in the "Trumpet.dev/src" 
directory: 

• Config.mk 

Contains common macros like DEBUG or OPT to control code generation and machine-independent 
setting like classpath settings.  



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

© 1998 Trumpet Consortium  Page 13 

• <system>.mk (where "<system>" is "sun5" or "hp") 

Contains machine-dependent definitions like compiler and linker flags, system libraries and system 
commands. 

• Rules.mk 

Contains rules and targets to be used in the makefiles. 

Depending on the location of required software packages (see also Section 3.1) it may be required to modify 
the "Config.mk" or "<system>.mk" files. Usually there is no need to modify the "Rule.mk" file or the specific 
makefiles. Each specific makefile includes the "Config.mk" and "Rule.mk" files, while the definitions set in 
"<system.mk>" are obtained implicitly through the "Config.mk" files. The relevant macros which may used 
throughout the makefiles are listed below. 

 
QUIET=quiet     supress commandline output 
DEBUG=debug     generate debugger code 
OPT=opt         optimize code 
PIC=pic         generate psosition independent code 
PROF=prof       generate profiling code 
STATIC=static   generate static executables 
 
INCS            C/C++ include directories 
CPPFLAGS        C/C++ preprocessor flags 
CFLAGS          C compiler flags 
CXXFLAGS        C++ compiler flags 
JFLAGS          JAVA compiler flags 
LDFLAGS         linker flags 
LDLIBS          libraries to link with 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

Page 14  © 1998 Trumpet Consortium 

4 OPERATION MANUAL 

4.1 Service Management 

4.1.1 CPN User Application 

4.1.1.1 Environment Settings 

The CustomerGUI.html file contains the parameters used to configure the CPN User Application. Four 
parameters define host access details and the rest define the scope of the map to be displayed. The four 
parameters that define access the CPN Server and the VASP can be broken into two groups of two 
parameters.  Two of the parameters define the host on which the CPN Server is running and the port on 
which it listens.  The other two parameters define the distinguished name for directory root on the VASP 
LDAP directory server and the password to access it. 

In the example below, the CPN server host is  set to 'localhost' communicating on port 3001.  The VASP 
LDAP distinguished name is set to: 'cn= Directory Manager, o=vasp' and the password set to 'Trumpet1' 

 
<param name="CPN_HOST" value="localhost"> 

<param name="CPN_PORT" value="3001"> 

<param name="VASP_DN" value="cn= Directory Manager, o=vasp"> 

<param name="VASP_PASSWORD" value="Trumpet1"> 

 

Other parameters are also specified which relate to the background map used by the GUI and which is read 
from the file map_nsp.gif.  The following is an example of the parameters used to define the map. 

 
<param name="MAP_WIDTH" value="601"> 

<param name="MAP_HEIGHT" value="739"> 

<param name="MAP_LONG_TL" value="-11.2"> 

<param name="MAP_LONG_TR" value="3.55"> 

<param name="MAP_LONG_BL" value="-9.7"> 

<param name="MAP_LONG_BR" value="2.4"> 

<param name="MAP_LAT_TL" value="59.48"> 

<param name="MAP_LAT_TM" value="59.48"> 

<param name="MAP_LAT_TR" value="59.48"> 

<param name="MAP_LAT_BL" value="49.84"> 

<param name="MAP_LAT_BM" value="49.84"> 

<param name="MAP_LAT_BR" value="49.84"> 

<param name="MAP_TALLEST" value="59.48"> 

<param name="MAP_MIDDLE" value="4"> 

<param name="MAP_LONGTOP" value="59.48"> 

<param name="MAP_LONGBOT" value="49.84"> 

MAP_WIDTH is the width of the map in pixels. 

MAP_HEIGHT is the height of the map in pixels. 

MAP_LONG_TL is the longitude reference for the top left-hand corner of the map. 

MAP_LONG_TM is the longitude reference for the top mid point of the map. 

MAP_LONG_TR is the longitude reference for the top right-hand corner of the map. 

MAP_LONG_BL is the longitude reference for the bottom left-hand corner of the map. 

MAP_LONG_BM is the longitude reference for the bottom mid point of the map. 

MAP_LONG_BR is the longitude reference for the bottom right-hand corner of the map. 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

© 1998 Trumpet Consortium  Page 15 

MAP_LAT_TL is the latitude reference for the top left-hand corner of the map. 

MAP_LAT_TM is the latitude reference for the top mid point of the map. 

MAP_LAT_TR is the latitude reference for the top right-hand corner of the map. 

MAP_LAT_BL is the latitude reference for the bottom left-hand corner of the map. 

MAP_LAT_BM is the latitude reference for the bottom mid point of the map. 

MAP_LAT_BR is the latitude reference for the bottom right-hand corner of the map. 

MAP_TALLEST is the longitude reference for the widest part of the map (normally the mid point) 

MAP_MIDDLE is the latitude reference for the middle point of the map. Note: This latitude reference should 
be the same at the top of the map and the bottom of the map i.e. the latitude at the middle of the map should 
be vertical. 

MAP_LONGTOP is the longitude reference at the MAP_MIDDLE latitude at the top of the map. 

MAP_LONGBOT is the longitude reference at the MAP_MIDDLE latitude at the bottom of the map 

These values should only be changed if the map background image (map_nsp.gif) is changed. 

4.1.1.2 Starting the Application 

The GUI can be executed using the Appletviewer that comes with the JDK or any Java enabled web-
browser.  

Note: For the GUI to successfully communicate with the CPN Server, the CPN Server must already be 
running. 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

Page 16  © 1998 Trumpet Consortium 

4.1.1.3 Operation 

The CPN User Application or GUI (Graphical User Interface) is a Java applet. As an applet it can be executed 
using the Appletviewer program, which comes with the Java Development Kit or executed in a Java enabled 
web-browser which supports the required JDK (currently 1.1). 

The main display of the GUI is shown below: 
 

 

Figure 4: Main Window of the CPN User Application 

Note: The map displayed by the GUI may be changed to best suit the requirements of the Customer 
Premises Network that is being managed by the GUI.  The functionality of the program is not changed just 
the backdrop. 

The display is constructed from four areas, the map; the checkboxes; the controls on the right hand side 
(checkboxes and large buttons) and the smaller buttons at the bottom of the map. 

The map is a display area on which sites and connections are displayed and can be scrolled using the 
scrollbars as required. 

The checkboxes control the information that is displayed on the map area.  The “Site Labels” checkbox 
when checked causes the labels containing the site name to be displayed close to the site marker, and when 
unchecked these labels are removed. The three “connection” checkboxes (Voice, Video and Data) control 
the display of which types of connections are displayed. Checking the box will cause connections of that 
type to be displayed in the map area. The final checkbox changes the size of the site marker. Checking the 
box causes larger markers to be displayed; removing the checking means that smaller site markers are used. 

The five larger buttons have the following actions: 
 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

© 1998 Trumpet Consortium  Page 17 

Button Label Button Action 

Show connections Displays a scrolling list box containing a text description of the 
known connections 

Status Displays a scrolling list box containing status messages 

Login Displays a login dialog  

Get connections Sends a request to the CPN Server for all know connections 

New site Displays a dialog for creating a new site 

The buttons underneath the map allows the map to be displayed larger (Zoom in) or smaller (Zoom out) or to 
be returned to its default size (Normal Viewing).  

4.1.1.3.1 Interacting with the Map 

In order to make use of the GUI it is necessary to interact with the map. This section describes the functions 
that can be carried out using the mouse to initiate actions on the map. 

Displaying Site Details 

The details of a site can be displayed in a dialog box by moving the mouse over the required site marker and 
pressing a mouse button.  The following image shows an example of possible site details: 

 

Figure 5: Display of Site Details 

Creating Connections 

To create a new connection the following actions should be taken: 

1. Click on the first site of the pair to be connected (site marker should change to blue) 

2. Keeping the mouse button depressed move the mouse to the second site (a line should be 
displayed between the mouse and the first site as shown below) 

 

Figure 6: Creating Connections 

3. When the second site marker changes colour the mouse button can be released, a line 
connecting site one with site two should be displayed 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

Page 18  © 1998 Trumpet Consortium 

4. When the two sites have been connected, a dialog box is displayed which allows the user to 
specify the connection requirements. The dialog is shown in the diagram below (Note: later 
versions of the GUI also allow bandwidth to be selected): 

 

Figure 7: Dialog Box "Create VPC" 

Type: This dropdown list allows the connection type to be set, possible choices are Voice, 
Video and Data.  Later versions of the GUI allow the required bandwidth for the connection to 
be selected from another dropdown list, which has values suitable for the connection type 
selected. 

Start Time: This section of the dialog allows the user selection of the required activation time for 
the connection. 

Stop Time: This section of the dialog allows the user selection of the required deactivation time 
for the connection. It can be set to a specified date and time, duration in hours or marked as a 
permanent connection, which means the user must delete the connection to release the 
resources used. 

Displaying Connection Details/Status 

The status of a connection is indicated by the colour of the connection line on the map as shown in the 
table below: 
 

Colour Indicated Connection Status 
Yellow Connection has been requested 
Orange Connection has been reserved by the VASP 
Green Connection active 
Grey Connection deactivated 
Red Connection is in an error state. 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

© 1998 Trumpet Consortium  Page 19 

However, if there are multiple connections between sites or the details of the connection need to be 
displayed then pressing down the mouse button on the connection line will display an information dialog.  
For a single connection between sites the following dialog is displayed: 

 

Figure 8: Dialog Box "Choose an Action" 

Later versions of the GUI also display the bandwidth of the connection is this dialog.   

If there are multiple connections between a site then the following dialog is displayed: 

 

Figure 9: Dialog Box "Select a Connection" 

As the mouse moves over each connection, its colour is changed indicating the selected connection. If the 
mouse button is then pressed, the connection details are displayed for that connection in a dialog box as 
shown. 

Modifying Connections 

To modify a connection’s settings, display the connection details dialog as previously discussed and press 
the Modify button. When selected, a dialog box similar to the create connection one is displayed, the 
difference being some of the fields cannot be changed.  At present only the stop time and bandwidth of a 
connection can be modified. 

Deleting Connections 

To delete a connection, display the required connection details dialog and select delete.  This will remove 
the connection from the map and send the required request to the CPN Server. 

4.1.2 CPN Server 

4.1.2.1 Environment Settings 

CLASSPATH Configuration 

The paths to the following class directories must be set in the CLASSPATH environment variable. 
 
../voyager/lib/voyager1.0.0.jar 
../jgl/jgl_2_0 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

Page 20  © 1998 Trumpet Consortium 

../netscape/ldap/classes 

../iaik_jce/lib/iaik_jce_full.jar 

../iaik_jce/lib/jdk11x_update.jar 

../iSaSiLk/lib/iaik_ssl.jar 

../iSaSiLk/lib/jdk11x_update.jar 

../ 

The path to voyager/bin and to the Java/bin directory must be included in the PATH environment variable. 

You must also ensure that you have the latest versions of the VASP classes used by the CPN Server 
installed in the directory or the CLASSPATH (i.e. VAssociationServer, VCustomerService, EntrySet, Entry, 
Attribute, AttributeList, CMISException). 

CPN Server Configuration 

The CPN Server can now be configured using its INI file (CPNServer.ini). This is used to store default 
information, which is required to run the CPN Server and provide values for the CPN GUI. 

The following sections are defined 

[CPN Server]  This section is used to define information required for the execution of the 
CPN Server 

 port=3001 This key specifies the default port number on which the CPN Server listens for 
connections from CPN GUI's.  

 loglevel=0 This key specified the level of logging to be output by the CPN Server, 0 indicates 
that no output should be generated apart from exception causes. 

[VASP Server]  This section is used to define information about the VASP Customer Server. 

 port=8000 This key specifies the default port number on which the VASP Customer Server 
listens for connections from the CPN Server. 

 hostname=localhost This key specifies the default host name on which the VASP Customer Server is 
running. 

[CMA Event Manager] This section is used to define information about the CMA Event Management 
Server. 

 port=50096 This key specifies the default port number on which the CMA Event Management 
Server listens for events from the CPN Server. 

 hostname=localhost This key specifies the default host name on which the CMA Event Management 
Server is running. 

[Site Details]  This section defines the CPN Server default site details. The sites specified in this 
section are only used if the file SITES.STO does not exist when the CPN Server 
starts. If this file does not exist then it is created using the site details from this 
section. 

  This section can contain multiple examples of the following key: 

    site='Sitename A','Location of site A',Latitude,Longitude 

[VoiceBandwidths]  This section contains the bandwidths, which should be displayed by the CPN GUI 
when Voice connections are selected. 

 Converter=64 This key specifies the conversion factor required to change the selected bandwidth 
to the units required by the VASP. This key must only occur once within this 
section. 

 b1='1 x 64K' This key specifies the first bandwidth that should be displayed by the GUI. The 
second bandwidth should have the key b2, the third b3 and so on. 

[DataBandwidths]  This section contains the bandwidths, which should be displayed by the CPN GUI 
when Data connections are selected. 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

© 1998 Trumpet Consortium  Page 21 

 Converter=1024 This key specifies the conversion factor required to change the selected bandwidth 
to the units required by the VASP. This key is only used by the GUI when the unit 
letter in the display string (see next key) contains 'M', as the default units are KBits 
per second. This key must only occur once within this section. 

 b1='1K' This key specifies the first bandwidth that should be displayed by the UI. The 
second bandwidth should have the key b2, the third b3 and so on. 

 b2='1M' This key specifies the second bandwidth to be displayed. 

[VideoBandwidths]  This section contains the bandwidths, which should be displayed by the CPN GUI 
when Video connections are selected. 

 Converter=1024 This key specifies the conversion factor required to change the selected bandwidth 
to the units required by the VASP. This key is only used by the GUI when the unit 
letter in the display string (see next key) contains 'M', as the default units are 
kilobits per second. This key must only occur once within this section. 

 b1='1M' This key specifies the first bandwidth that should be displayed by the GUI. The 
second bandwidth should have the key b2, the third b3 and so on. 

 

Running the CPN Server as a Windows NT Service 

The CPN Server can be run under Windows NT as a service using the SRVANY.EXE software, which comes 
with the Windows NT Resource Kit.  Follow the instructions in the file SRVANY.WRI to install 
SRVANY.EXE as a Windows NT service.  When “Interact with Desktop” is selected, a command window is 
displayed by the system where output messages are displayed as if the CPN Server was run from a 
Command Prompt window. Also displayed is the Connection Status Window. 

When specifying the parameters to the service in the registry the following are required: 

 Application value = <installed jdk path>\bin\java.exe  

 AppDirectory value = <CPN Server classes path> 

 AppParameters value = CPN 

It is important to ensure that the CLASSPATH environment variable is set as discussed above at the System 
level not user login level. 

Note: When running the CPN as a background service it is advisable to reduce the amount of information 
output by the CPN server to its log file by setting the loglevel key in the INI file to 0 (zero) 

4.1.2.2 Starting the Application 

On Solaris or HP OpenView platforms execute the runServer script file. 

On Windows 95 or NT configure the CLASSPATH and PATH environment variables as described above, 
start a command prompt session and execute the command “java CPN”. 

Alternatively, the CPN Server can be run as a Service under Windows NT, which has a web server installed 
and the SRVANY.EXE (from the Windows NT Resource Kit) program installed. As such the execution can 
be started automatically by the system or manually by the user through the control panel (see 
SRVANY.WRI for additional information). 

4.1.2.3 Operation 

The CPN Server runs inside a Java Virtual Machine and can therefore run on any platform which supports a 
suitable Java VM.  For users on Solaris or HP OV platforms a script file, runServer, can be used to start the 
CPN Server using predefined hosts and ports which override those in the CPNServer.Ini file (see 
Environment Settings above).  For users of Windows 95 or NT then the following command can be used 
providing the environment has been correctly set as previously discussed. 

 java CPN  



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

Page 22  © 1998 Trumpet Consortium 

This command would start the CPN Server using the host and port values defined in the CPNServer.Ini file. 
If the values from the INI file need to be overridden then the following command line can be used: 

 java CPN <listening port> <VASP host> <VASP port> <CMA host> <CMA port> 

Where <listening port> is the port number on which the CPN Server will listen for connections from user 
applications. <VASP host> is the host name on which the VASP Association Server is running. <VASP 
port> is the port number on which the VASP Association Server is lis tening for CPN Server connections. 
<CMA host> is the host name on which the CMA Event Manager is running. <CMA port> is the port 
number on which the CMA Event Manager listens for connections. 

Note: If any parameters need to be specified, all of the parameters must be present otherwise an error will 
be generated and the Server execution terminated. 

4.1.3 VASP Customer Server 

4.1.3.1 Environment Settings 

CLASSPATH configuration 

The Customer Server is a Java code program, and the environment variable CLASSPATH needs to lead to:  

• The Vasp directory (which contains the customerServer, controlServer and vaspTypes directories), 

• The virtual classes of the used CPN classes, 

• The Objectspace Voyager 1.0 package, 

• The Objectspace JGL 2.0.2 package, 

• The Netscape LDAP SDK 1.0 package and filter package, 

• IAIK-JCE 2.0 package, 

• IAIK iSaSiLk 2.0a packages, 

• The JDK 1.1.4 package. 

 

Communication with the CMA Event Manager 

The parameters of the communication can be configured using the following properties: 

• CUSTOMER_CLASS which specifies the Managed Object Class of the Customer Server (default value 
=2), 

• CUSTOMER_ID which specifies the Managed Object Identity of the Customer Server (default value = 5), 

• CMA_SERVER_HOST which specifies the hostname on which the CMA Event Manager Server is 
running (default name = localhost), 

• CMA_SERVER_HOST which specifies the port on which the CMA Event Manager Server is listening 
(default value = 50096). 

 

Connection to the LDAP Directory Server 

The parameters of the connection can be configured using the following properties: 

?  LDAP_SERVER_HOST which specifies the hostname on which the LDAP Directory Server is running 
(default name = localhost), 

?  LDAP_SERVER_HOST which specifies the port to connect to the LDAP Directory Server (default value 
= 1389). 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

© 1998 Trumpet Consortium  Page 23 

4.1.3.2 Starting the Application 

For users on Solaris or HP OpenView platforms, the runCustServer script file sets up the CLASSPATH and 
runs the application with specified values. An edition can be necessary to adapt it to the specific 
environment. 

Otherwise the user has to configure the CLASSPATH environment variable, and to run the application with 
the following command :  

Java -DLDAP_SERVER_HOST=host name   -DLDAP_SERVER_PORT=value -DCMA_SERVER_HOST=host 
name -DCMA_SERVER_PORT=value -DCUSTOMER_CLASS=value -DCUSTOMER_ID=value 
AssociationServer 

Note: the -D option permit to specify a Java property value. And the non-specification of one property lead to the use of 
its default value. 

4.1.4 VASP Control Server 

The following will be required in order to run the classes that comprise the ControlServer properly: 

• JDK 1.1.3 or later installed and available. 

• IONA OrbixWeb 2.1 RunRime 

This module is started by running the vaspVpnManager class. This class’s  main method creates the one 
instance of the vaspVpnManager class. The main method expects one parameter which is the Id of the 
VASP used in communication with the PNOs. Moreover, the controlServer module uses a routing table 
containing static routing information. The routing information should be described in a file, the routing 
table, prior to starting up the VASP. 

The full name of this table file, i.e., the full path-name plus the file name, is made known to the controlServer 
by means of Java’s property mechanism. The property name chosen for the route table is 
ROUTETABLE_PATH. The value of this  property is set by mean of the -D option of the java command. For 
example, assuming that the routing information is in the file myRoutingTable with a full path 
myRoutingTablePath, and that the Id of the VASP is TRUMPETVasp, one should start up the VASP in the 
following way: 

java -DROUTETABLE_PATH=/myRoutingTablePath/myRoutingTable   

                               controlServer.vaspVpnManager  TRUMPETVasp  

Note that if the ROUTETABLE_PATH is not set,  no connection can be managed/set up. 

The format of this file is given below in the form of an example that illustrates its content: 

 cpnId: NR         
 accesspoint: NRAtmSW1  

 pnoId: pnoNorway         
 accesspoint: nAccessAddress1       
 accesspoint: nAccessAddress2 

 pnoId: pnoSwiss         
 accesspoint: swAccessAddress1       
 accesspoint: swAccessAddress2 

 pnoId: pnoScotland         
 accesspoint: scAccessAddress1       
 accesspoint: scAccessAddress2 

 cpnId: EPFL         
 accesspoint: EPFLAtmSW5 

The semantic of this table is that the access point of the first customer (NR) connects to the first access 
point of the following PNO (pnoNorway), and the second access point of that PNO connects to the first 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

Page 24  © 1998 Trumpet Consortium 

access point of the next PNO (pnoSwiss) in the list, and so on. Finally, the second access point of the last 
PNO in the list (pnoScotland) connects to the access point of the other customer (EPFL). 

Multiple route entries in the file are separated by a line having an “&” as its first character (the rest of the 
line is ignored). Matching is made on the basis of the Ids of the source and target end-users (cpnId). The 
first entry whose first (starting) cpnId matches the given source cpnId and whose last (terminating) cpnId 
matches the given target cpnId is returned. 

In the controlServer directory, the shell script  runControlServer is made to start running the controlServer 
module (vaspVpnManager class). This shell script in addition to what was explained above sets the java 
environment variable CLASSPATH and checks whether the RMI Registry and the Orbix demon on which the 
controlServer depends are running. 

Note that in case that the VASP Id and/or the routeTable path are different from those specified in the 
runControlServer script, one must edit the script to put the correct values.  

 

4.1.5 VASP CORBA/TMN Gateway 

4.1.5.1 Environment Settings 

The following environment variables are normally set in the script files provided with both the runtime and 
development packages. 

 LD_LIBRARY_PATH: this variable should contain the path to the SECUDE library as well as to the Orbix 
2.2 C++ MT libraries. 

• TMS_CMA_HOME: this variable should be set if the CMA management event reporting system is used. 
It should give the path to the configuration file cma_tms.cfg, which specifies CMA host and port 
number. Examples of entries in this file are: 

CMA_ME_HOSTNAME   medoc.eurecom.fr 

CMA_PORT_NUMBER   50096 

CMA_MAX_PENDING   5 

Other variables in this file define the codes for object classes and instances in the specifications of 
events in the TRUMPET messaging system. 

• XUSER_NMS_COFIG_FILE: this variable is used for TMN association between the gateway and the 
Xuser agents. It should give the complete path to the configuration file of the Xuser manager (recall 
that the gateway acts as an Xuser manager). In this configuration file, the AP Title and the Presentation 
Address for the manager entity should be defined, as well for each agent that it may establish an 
association with. In the presentation address, the last 12 digits represent the IP address of the host 
running the process (in the example below, IP address = 193.55.114.166). 

MANAGER_AP_TITLE = C=fr; O=TRUMPET Project; OU=Ascom; CN=XuManager 

MANAGER_PRESENTATION_ADDRESS = OVDM,ses0,tp0,0x540072872203193055114166 

 

AGENT_NUMBER   = 1 

 

AGENT0_NAME = pno1 

AGENT0_AP_TITLE = C=fr; O=TRUMPET Project; OU=Ascom; CN=XuAgent1 

AGENT0_PRESENTATION_ADDRESS = OVDM,ses0,tp0,0x540072872203193055114166 

4.1.5.2 Starting the Application 

The CORBA/TMN Gateway must be started only when the Xuser agents in the PNO domains are already 
running. This is because in the current implementation, the gateway (i.e. the Xuser manager) associates to 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

© 1998 Trumpet Consortium  Page 25 

the agents when it starts, but does not attempt any further association while it is running. It should be 
started before the Control Server. 

The following options are supported: 

-d : level 1 debug output 

-D : level 2 debug output 

-S : enables use of security package (default OFF) 

-s : specifies name of CORBA server 

-C : enables emission of management events for CMA (default OFF) 

4.1.5.3 Utilisation 

Once the CORBA/TMN Gateway has been launched, its functioning is automatic with no possible human 
interaction. It simply translates CORBA requests received from the Control Server into CMIP requests for 
the Xuser agents, and translates CMIP notifications into CORBA notifications in the opposite direction. 

From the trace output given by the process, the user can monitor the following operations: 

• Association with the Xuser agents  

• Connection establishment with the Control Server through CORBA 

• Reception of CORBA requests and emission of CMIP requests 

• Reception of CMIP notifications and emission of CORBA notifications 

4.1.6 VASP CMA Management Event Reporting 

The CMA based TMS (Trumpet Messaging System) is composed of three different entities: 

- ME (Mediation Entity) 

- MOSE (Managed Object Server Entity) 

- AE (Application Entity) 

The entities communicate through CORBA (Orbix 2.3) and use the naming service to connect to each other. 
There are two different AEs: a "text -mode" application that is here mainly for testing, and a graphical 
application in java. For a demo, the graphical java AE should be used. 

The package for the complete CMA messaging system includes the following: 

- Executable files for Solaris 2.5.x: 

- TMS_ME 

- TMS_MOSE 

- TMS_AE_TEXT 

- Scripts: 

- tms_me   : script for the ME 

- tms_mose  : script for the MOSE 

- tms_ae_java : script for the java graphical AE 

- tms_ae_text : script for the text -mode AE 

- Data files: the following files are used by the CMA entities to profile the object model and should be 
located in the ${TRUMPET_RT}/data/cma-v41 directory of the runtime distribution. 

- hosts.pro 

- m3100.pro 

- tms.pro 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

Page 26  © 1998 Trumpet Consortium 

- Configuration 

- cma.csh : do a "source" of this file (located in the ${TRUMPET_RT}/data/cma-v41 directory) to 
have the naming service bin directory in your path, and ensure that the TMS_CMA_HOME 
variable is set 

- cma_tms.cfg : config file used by the ME 

4.1.6.1 Environment Settings 

Environment variables. The variables required for this application are set in the configuration file cma.csh: 
check this file and do a source of it to get a correct environment. In particular, the variable 
TMS_CMA_HOME should define the directory where the configuration file cma_tms.cfg can be found by 
the application. 

Orbix daemon. The CMA entities use Orbix to communicate, so the Orbix daemon must run. The daemon 
should be started with the options -t and -u: the -t option is not strictly required but provides more trace 
output, the option -u is absolutely necessary for the naming service. 

Orbix Naming service. Check that the name server has been registered: with "lsit", the server name "NS" 
should be listed, and you should have launch and invoke rights on it. If the name server is not registered, 
do: 

putit -l NS <NAMING SEVICE BIN PATH>/ns 

Java GUI Application. The IOR for the name service should be specified in the file OrbixWeb.properties in 
the java subdirectory. To get this IOR, use the program "iorns", which is located in the naming service bin 
directory. Check also the other variables set in this file: 

OrbixWeb.IT_LOCAL_DOMAIN  local domain (e.g. fokus.gmd.de) 
OrbixWeb.IT_NAMES_SERVER  name server : should be NS 

OrbixWeb.IT_NS_HOSTNAME  name server host (can be IP address) 

OrbixWeb.IT_LOCAL_HOSTNAME  local host name for the java AE 

OrbixWeb.IT_ORBIXD_PORT  port number of orbix daemon 

4.1.6.2 Starting the Application 

The CMA system should normally be started before the Trumpet processes that send management events: 
CPN server, customer server, CORBA/TMN gateway. To start the CMA servers, simply use the provided 
scripts in the following order: 

./tms_me 

./tms_mose 

./tms_ae_java 

 

Use separate windows in order to monitor some trace output by each process, look in the scripts for the "-
trace" option that produces the traces. 

4.1.6.3 Utilisation 

In order to get in the GUI panel the management events generated by the various processes of the 
TRUMPET system, the following sequence of actions should be observed, starting from the initial dialog 
box. 

- subscribe to "trumpet" 

- click event browser: this should create event record tree window 

- double click top icon "event record" in event tree window this should create event panel window 

- select "trumpet:cpnServer" in initial window 

- click event filter: this should create event filter window 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

© 1998 Trumpet Consortium  Page 27 

- select "PerceivedSeverity" in toggle menu: this should make the word "PerceivedSeverity" appear in 
the middle field 

- Click "Add", which should add a filter line at the bottom of the window, and close the window. 

- Repeat A, B, C, D for customer server and Xuser manager. 

- At this point, events can be received and displayed. 

- When events are received, they are automatically displayed in the event panels as new lines. When 
double-clicking on any line, you get more detailed information on the event. 

As an alternative to the "one event panel does it all" scenario, it is also possible to create separate event 
panels for each managed entity: for example, select "trumpet:cpnServer" in the initial window, click on the 
browser button, and double-click on the top icon in the event record tree panel. This will create a event 
panel specific to the CPN server. The same applies to Customer server and Xuser manager. 

In the event tree panel, if the icon "alarm records" is selected (in the subtree below the root "event 
records"), then a panel specific to the management events is created, that does not contain the object 

creation notifications. Note that in this case, the panel will not be displayed until a first event is received 
(the application needs this first event to perform the dynammic configuration of the panel columns). 

 

Gateway events. As a reminder: to enable the emission of managemenet events by the CORBA/TMN 
gateway, it should be started with the "C" option ("runGateway -C"). Otherwise, no events are generated. 

 

Troubleshooting:  

- Check Orbix version (orbixd -v): should be 2.3 

- Check Orbix daemon port number (also with orbixd -v) it should match the one in OrbixWeb.properties 

- Check Orbix daemon option -u (ps -cafe | grep orbix) 

- Make sure that not more than 1 NS process is running 

- Make sure that not more than 1 ME and MOSE process are running 

- If problem with naming service, check the existing naming contexts (with command "lsns" in naming 
server path) and remove the tms context (with command: "rmns tms"). 

4.1.7 PNO Xuser-Agent 

The Xuser-Agent software realises the service layer management system of a PNO which provides the 
Xuser interface to the VASP for the management of VP segment connections. As part of the TRUMPET run-
time package distribution the software has been tailored to simplify the software installation according to 
the TRUMPET scenario involving two PNO domains. 

4.1.7.1 Hardware and software prerequisites 

The Xuser-Agent software as part of the current TRUMPET run-time package distribution has been built for 
the following environment: 

• SUN/SPARC Solaris 2.5 or higher; 

• HP OpenView DM version 5.01. 

If the TRUMPET development package distribution is available and recompilation of the Xuser-Agent 
software is required the following tools are required additionally: 

• GNU C, C++ compiler version 2.6 or higher; 

• GNU make utility version 3.7 or higher. 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

Page 28  © 1998 Trumpet Consortium 

4.1.7.2 Installation and configuration instructions 

The PNO Xuser-Agent is installed using configuration files. The TRUMPET run-time package distribution 
contains two sets of configuration files for the two PNO domains. The only exception constitutes the local 
registration file "Xuser.lrf" which only exists once as it does not include system specific information. All the 
configuration files are located in the directory "~/Trumpet.RT/etc". To differentiate the sets of 
configurations files, the name of the PNO is included in the filenames. For the sake of generality the names 
PNO1 and PNO2 are used in the run-time package distribution which may be replaced by specific names. 
Note, however, that if the filenames are changed, the shell scripts "runAgent<PNO Name>" and 
"runSched<PNO Name>" need to modified (see below) to allow the Xuser-Agent software to access the 
configuration files.  

For the development package distribution the configuration files are located in the directory 
"~/Trumpet.dev/src/xuser/etc". Note, that the naming convention are slightly different, as the name of the 
system host is added to filenames.  

The Xuser-Agent configuration consists of the following files: 

• Xuser.<PNO Nane> 

This files contains a set of variables to define the Xuser-Agent application entity title and addressing 
information. These variables need to be set if the Xuser-Agent shall use the explicit ACSE facility 
(default). Note, that explicit ACSE facility is required to activate TRUMPET security.  

Below the relevant variables which need to be set for the explicit ACSE facility according to system 
configuration are described below. There are more variables included which are solely used for 
internal or debugging purposes. 

AGENT_AP_TITLE=  C = de; O = GMD GmbH; OU = FOKUS; CN = PNO1 

Defines the application title of the Xuser Agent application entity. The title can be given as an object 
identifier or distinguished name, however, if TRUMPET security is being used a distinguished name 
must be provided. 

AGENT_AE_QUALIFIER= 2 

Defines the application entity qualifier which is a numerical value. This value is not used if the 
application title is given as a distinguished name. 

AGENT_PRESENTATION_ADDRESS= OVDM,ses0,tp0,0x540072872203193175132212 

The Xuser-Agent PSAP address according to the RFC1006 specification. The last twelve digits 
contain the internet address of the system host where the Xuser-Agent is installed.  

• sched. <PNO Nane> 

This file may contain internal data of the Xuser-Scheduler. There is no need to edit this file. 

• XU_EDB.initial.<PNO Name>  and  XU_EDB.<PNO Name> 

These two files contain the persistent data of the Xuser-Agent management information base. The 
first file contains the initial database which is intended to serve as a backup copy so that the 
management information base can be set back easily to its initial status. The latter file contains the 
actual database file which may change during the operation of the Xuser-Agent. The contents of the 
two files are identically before the Xuser-Agent has been started for the first time. Usually there is no 
need to modify these files. However, if the name of the ServiceProvider Managed Object needs to be 
modified, edit both files and search for the value of the variable "SYS" in the first line. Then replace 
this value globally with the new name of the ServiceProvider Managed Object. Note, that it is 
essential to replace all occurrences of the name value in both files to keep the consistency of the 
management information base. 

• Xuser.lrf 

If the explicit ACSE facility is not used the Xuser-Agent needs to be registered with Object 
Registration Service (ORS) of the HP OpenView DM run-time system. Note, that the explicit ACSE 
facility is required to use TRUMPET security. 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

© 1998 Trumpet Consortium  Page 29 

To register the Xuser-Agent with the ORS the "ovaddobj" command is used: "ovaddobj Xuser.lrf" 

4.1.7.3 Runtime 

The Xuser-Agent software includes two programs: The Xuser-Agent and the Xuser-Scheduler. The agent 
handles the management requests while the scheduler is responsible for the timely activation and de- 
activation of scheduled virtual paths. Both programs can be run using shell scripts, which are located in the 
directory "Trumpet.RT/scripts" of the run-time package distribution. Within the development package 
distribution the shell scripts can be found in the directory "~/Trumpet.dev/src/xuser". Similar to the 
configuration files, each shell script exists twice according to the TRUMPET scenario involving two PNO 
domains, namely PNO1 and PNO2. Note, that the naming convention used with the development package 
distribution is slightly different, as the name of the system host is added to filenames. 

To run the Xuser-Agent software the Xuser-Scheduler program needs to be started first: "./runSched<PNO 
Name>". Then start Xuser-Agent program : "./runAgent<PNO Name>". For the Xuser-Agent the following 
option apply: 

• -i: Re-initialize the management information base. 

• -A: Turn on explicit ACSE facility. Default, if -S option is given. 

• -S: Turn on TRUMPET Security 

 

4.1.8 PNO CMA-Based NMS 

4.1.8.1 Environment Settings 

The CMA based network management system for the FORE switch is composed of an API used by the 
Xuser agent, and two processes: the NMS_MOSE and the NMS_ME. The environment requirements are as 
follows: 

• The CMA processes communicate through CORBA: the orbix daemon must be running (version Orbix 
2.3), and the Orbix Service Naming should be installed. 

• The NMS_ME uses the HP-OV APIs (HP OpenView DM 4.21 or higher) for SNMP management. 

• Configuration files: the files m3100.pro, hosts.pro, xuser.pro, community.txt should be present in 
the ${TRUMPET_RT}/data/cma-v41 directory. 

The file hosts.pro describes the object instances in the CMA model: for the objects of class “ATM 
Equipment”, the IP address of the equipment (switch) should be given as “AgentId”. The 
corresponding community names for SNMP management should be given in the file community.txt. 
Other files need not be changed. 

• Environment variable (they are normally set in the provided scripts): 

NMS_CMA_HOME   directory ${TRUMPET_RT}/data/cma-v41 

Xuser_Def_VPI    default VPI 

Xuser_VPI_Base    Connections will be established with VPIs in 

Xuser_VPI_Range   the interval [Base, Base + Range]. 

CMA_SNMP_COMMUNITY  community name for SNMP management 
 

4.1.8.2 Starting the Applications 

Use the scripts provided in the runtime distribution to start the NMS_ME and the NMS_MOSE, and then 
start the Xuser agent. 

The ATM switches to manage should be known before starting the system: their IP addresses should be 
given in the configuration file hosts.pro and the community names in the file community.txt as described 
above. In the TRUMPET demo environment, there is only one FORE switch to manage per Xuser agent; in 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

Page 30  © 1998 Trumpet Consortium 

this case, there is only one IP address to fill in the hosts.pro file, and the community name of the switch 
should be given in the community.txt file and as an environment variable. 

4.2 Security Management 

4.2.1 Security Admin Tool 

This window allows to start the management session. The administrator can select the security service in 
the administration menu : Security Profile Management, Access Control or Audit. The Security Status menu 
displays the number of security alarms for each severity level. Two buttons allow to display more 
information about the alarms and management events. 

 

Figure 10: Main Window of the Security Admin. Tool 

4.2.1.1 Management of the Security Profiles 

4.2.1.1.1 What are Security Profiles? 

Security profiles are consistent sets of security services and mechanisms specified to meet requirements for 
varying Quality of Protection (QoP).  

According to the security requirements for the X interfaces of a service management system, three levels of 
QoP are defined by Trumpet : minimal, basic, and advanced. Additionally a nil-security profile is defined to 
be able to interact with existing system having no security implemented. 

0. The nil-security profile comprises no security mechanisms. It can typically be used for temporarily 
removing security in interactions with a particular destination. 

1. A minimal security profile, stressing the correctness of stored data and a minimal accountability for all 
management activities. It comprises the following security services : identification and authentication of 
the initiator (managing) entity, management association access control and access control to resources, 
and security audit trail and alarm. 

2. A basic security profile, adding protection of transferred data against disclosure, modification or inser-
tion. In addition to – or in replacement of – the security services of the minimal profile, strong 
authentication1 of the initiator (managing) entity, data origin authentication, and transferred data 
integrity and confidentiality are present. 

3. An advanced security profile, for areas such as accounting and security management, where account-
ability has to be stressed, confidentiality of transfers is needed, as well as high availability. In addition 
to, or replacement of, the services for the basic security profile, strong mutual authentication of the 
management entities (both manager and agent), management notification access control, connection 
integrity and confidentiality, non-repudiation of origin and non-repudiation of delivery are needed.  

The protection provided by the security profiles defined by TRUMPET is summarised in the following table.  

                                                                 
1  Strong authentication refers to an authentication mechanism making use of cryptographic means as opposed to simple 

or protected passwords.  



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

© 1998 Trumpet Consortium  Page 31 

Table 2. Trumpet Security Profiles 

SP0 SP1 SP2 SP3 
No 
security 

Emphasis on the integ-
rity and confidentiality 
of stored managed 
resources 

SP1 plus integrity of transferred 
data 

SP2 plus strong accountability of 
management operations 

 
• Authentication of 

initiating 
management entity 

• Management 
association access 
control 

• Managed resource 
access control 

• Security alarm, audit 
and recovery 

• Authentication of initiating 
management entity 

• Management association 
access control 

• Management notification 
access control 

• Managed resource access 
control 

• Data origin authentication 

• Connection integrity 

• Security alarm, audit and 
recovery 

• Mutual authentication of peer 
management entity 

• Management association access 
control 

• Management notification access 
control 

• Managed resource access 
control 

• Data origin authentication 

• Connection integrity 

• Non-repudiation of origin 

• Non-repudiation of delivery 

• Security alarm, audit and reco-
very 

  SP2A SP3A 
  SP2 plus confidentiality of 

selected communicated data 
SP3 plus connection confidentiality 
and confidentiality of selected com-
municated data 

The Advanced Security Profile cannot be implemented in a satisfying way on the commercial management 
platforms, such as HP OpenView DM .  

In TRUMPET, SP0 and SP2A are implemented for validation in the TRUMPET trials. 

4.2.1.1.2 How to Select a Security Profile? 

The entity to which a security policy applies is a couple of two Management Application Entities (MAE), 
known by their Distinguished Name (DN), located in two different TMN domains. This allows the security 
administrators to select the most appropriate profile depending on such parameters as the level of trust 
between the two domains and the sensitivity of the application. The Distinguished Names of the 
corresponding applications should be exchanged between the security administrators of the two 
management systems by out-of-band means prior to configuring the security profile. 

Security Policy rules are set up as a table with entries 

(initiatorTitle, initiatorRole, responderTitle, accessControlDirectory, securityProfile). 

A java GUI allows to fill each of these entries : 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

Page 32  © 1998 Trumpet Consortium 

 

Figure 11: Window of the Security Profile Manager 

The table is expected to be found on a file which name is retrieved from the environment variable 
SECURITY_PROFILES. In case this variable is not set, a file "secprofs.txt" is looked for, and in case this file 
neither exists, no security profiles will be set up.  

The file must have entries like this : 
 
iT: cn=BMA,OU=NR,O=TRUMPET Project 
iR: [AGENT|MANAGER] 
rT: cn=ABMA,OU=NR,O=TRUMPET Project 
aC: /path/to/access/control/directory 
sP: [NULL|MIN|BASIC|ADV] 

The meaning of the sP values are : 

NULL: SP0 

MIN: SP1 

BASIC: SP2 

ADV: SP3 

Table entries must be separated with lines starting with a space (or just a new line). If multiple (iT, iR, rT) 
tuples are present in the file, the last one is used. In case of a bad entry specification, the entry is skipped. 

A sample secprofs.txt file : 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

© 1998 Trumpet Consortium  Page 33 

 
iT: cn=BMA, OU=NR,O=TRUMPET Project  
iR: AGENT 
rT: cn=ABMA,OU=NR,O=TRUMPET Project 
aC: /path/to/null-rules 
sP: NULL 
 
iT: cn=mv,OU=UCL,O=TRUMPET Project 
iR: MANAGER 
rT: cn=amv,OU=UCL,O=TRUMPET Project 
aC: /path/to/min-rules 
sP: MIN 
 
iT: cn=BMA,OU=NR,O=TRUMPET Project 
iR: AGENT 
rT: cn=mv,OU=UCL,O=TRUMPET Project 
aC: /path/to/basic-rules 
sP: BASIC 
 
iT: cn=BMA,OU=NR,O=TRUMPET Project 
iR: AGENT 
rT: cn=m.v,OU=UCL,O=TRUMPET Project 
aC: /path/to/adv-rules 

sP: ADV 

 

4.2.1.2 Audit and Alarm Administration Tool 

EFD Management 

The window allows the management of the EFD. A scrolled list allows the selection of a host. The create and 
delete buttons allow the creation on the selected host of an EFD and the deletion on the selected host of the 
selected EFD. A list displays all the EFD that have been created for a selected host. 

 

Figure 12: Dialog Box "EFD Management" 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

Page 34  © 1998 Trumpet Consortium 

Alarm Viewer 

This window shows the collected events. For the alarms the severity is displayed and for the non security 
events, the severity is empty. 

 

Figure 13: Window of the Alarm Viewer 

Log Management 

This window enables the display of the logged events with the Edit button and the deletion of the log with 
the button Delete. 

 

Figure 14: Dialog Box "Log Management" 

4.2.2 Management of the Security Profiles 

4.2.2.1 What are Security Profiles? 

Security profiles are consistent sets of security services and mechanisms specified to meet requirements for 
varying Quality of Protection (QoP).  



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

© 1998 Trumpet Consortium  Page 35 

According to the security requirements for the X interfaces of a service management system, three levels of 
QoP are defined by Trumpet : minimal, basic, and advanced. Additionally a nil-security profile is defined to 
be able to interact with existing system having no security implemented. 

0. The nil-security profile comprises no security mechanisms. It can typically be used for temporarily 
removing security in interactions with a particular destination. 

1. A minimal security profile, stressing the correctness of stored data and a minimal accountability for all 
management activities. It comprises the following security services : identification and authentication of 
the initiator (managing) entity, management association access control and access control to resources, 
and security audit trail and alarm. 

2. A basic security profile, adding protection of transferred data against disclosure, modification or inser-
tion. In addition to – or in replacement of – the security services of the minimal profile, strong 
authentication2 of the initiator (managing) entity, data origin authentication, and transferred data 
integrity and confidentiality are present. 

3. An advanced security profile, for areas such as accounting and security management, where account-
ability has to be stressed, confidentiality of transfers is needed, as well as high availability. In addition 
to, or replacement of, the services for the basic security profile, strong mutual authentication of the 
management entities (both manager and agent), management notification access control, connection 
integrity and confidentiality, non-repudiation of origin and non-repudiation of delivery are needed.  

The protection provided by the security profiles defined by TRUMPET is summarised in the following table.  

Table 3. Trumpet Security Profiles 

SP0 SP1 SP2 SP3 
No 
security 

Emphasis on the integ-
rity and confidentiality 
of stored managed 
resources 

SP1 plus integrity of transferred 
data 

SP2 plus strong accountability of 
management operations 

 
• Authentication of 

initiating 
management entity 

• Management 
association access 
control 

• Managed resource 
access control 

• Security alarm, audit 
and recovery 

• Authentication of initiating 
management entity 

• Management association 
access control 

• Management notification 
access control 

• Managed resource access 
control 

• Data origin authentication 

• Connection integrity 

• Security alarm, audit and 
recovery 

• Mutual authentication of peer 
management entity 

• Management association access 
control 

• Management notification access 
control 

• Managed resource access 
control 

• Data origin authentication 

• Connection integrity 

• Non-repudiation of origin 

• Non-repudiation of delivery 

• Security alarm, audit and reco-
very 

  SP2A SP3A 
  SP2 plus confidentiality of 

selected communicated data 
SP3 plus connection confidentiality 
and confidentiality of selected com-
municated data 

The Advanced Security Profile cannot be implemented in a satisfying way on the commercial management 
platforms, such as HP OpenView DM .  

                                                                 
2  Strong authentication refers to an authentication mechanism making use of cryptographic means as opposed to simple 

or protected passwords.  



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

Page 36  © 1998 Trumpet Consortium 

In TRUMPET, SP0 and SP2A are implemented for validation in the TRUMPET trials. 

4.2.2.2 How to Select a Security Profile? 

The entity to which a security policy applies is a couple of two Management Application Entities (MAE), 
known by their Distinguished Name (DN), located in two different TMN domains. This allows the security 
administrators to select the most appropriate profile depending on such parameters as the level of trust 
between the two domains and the sensitivity of the application. The Distinguished Names of the 
corresponding applications should be exchanged between the security administrators of the two 
management systems by out-of-band means prior to configuring the security profile. 

Security Policy rules are set up as a table with entries 

(initiatorTitle, initiatorRole, responderTitle, accessControlDirectory, securityProfile). 

The table is expected to be found on a file which name is retrieved from the environment variable 
SECURITY_PROFILES. In case this variable is not set, a file "secprofs.txt" is looked for, and in case this file 
neither exists, no security profiles will be set up.  

The file must have entries like this  : 
 
iT: cn=BMA,OU=NR,O=TRUMPET Project 
iR: [AGENT|MANAGER] 
rT: cn=ABMA,OU=NR,O=TRUMPET Project 
aC: /path/to/access/control/directory 
sP: [NULL|MIN|BASIC|ADV] 

The meaning of the sP values are : 

NULL: SP0 

MIN: SP1 

BASIC: SP2 

ADV: SP3 

Table entries must be separated with lines starting with a space (or just a new line). If multiple (iT, iR, rT) 
tuples are present in the file, the last one is used. In case of a bad entry specification, the entry is skipped. 

A sample secprofs.txt file : 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

© 1998 Trumpet Consortium  Page 37 

 
iT: cn=BMA, OU=NR,O=TRUMPET Project  
iR: AGENT 
rT: cn=ABMA,OU=NR,O=TRUMPET Project 
aC: /path/to/null-rules 
sP: NULL 
 
iT: cn=mv,OU=UCL,O=TRUMPET Project 
iR: MANAGER 
rT: cn=amv,OU=UCL,O=TRUMPET Project 
aC: /path/to/min-rules 
sP: MIN 
 
iT: cn=BMA,OU=NR,O=TRUMPET Project 
iR: AGENT 
rT: cn=mv,OU=UCL,O=TRUMPET Project 
aC: /path/to/basic-rules 
sP: BASIC 
 
iT: cn=BMA,OU=NR,O=TRUMPET Project 
iR: AGENT 
rT: cn=m.v,OU=UCL,O=TRUMPET Project 
aC: /path/to/adv-rules 
sP: ADV 

4.2.3 Management of the Authentication Keys 

4.2.3.1 What are Authentication Keys? 

There are two types of keys used in the TRUMPET SMP : asymmetric and symmetric keys. Asymmetric keys 
are used for : 

• peer-entity authentication based on public key algorithms; 

• management of symmetric keys; 

• non-repudiation. 

Symmetric keys (the term secret key is also used) are used for data integrity, data authentication, and data 
confidentiality. 

In TRUMPET, the symmetric keys are session keys whose life duration is limited to a management 
association; they are managed (i.e. generated) by the SMP without any involvement of the security 
administrator; hence this section is only related to the management of asymmetric keys for authentication. 

Keys for security algorithms have to be generated, distributed, stored, updated, withdrawn, destroyed, and 
possibly notarised at various stages in their existence. Key management includes all these operations, and 
has as its central purposes  : 

• ensure that keys are of sufficient quality; 

• ensure that private keys are kept confidential;  

• ensure that public keys are certified and distributed in a reliable manner. 

Asymmetric keys in TRUMPET (private / public key pairs) are generated, installed, certified, and withdrawn 
by off-line means, and the keys remain valid for a long period of time. On-line management of asymmetric 
keys, i.e. activities that have to be performed in the course of establishment or use of a secure management 
association, are restricted to : 

• access to private keys; 

• access to public keys and key certificates. 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

Page 38  © 1998 Trumpet Consortium 

Each entity in TRUMPET that needs to authenticate or otherwise use public key encryption, must have a 
private key that is accessible only to the entity itself, and a public key that is distributed in the form of an 
X.509 certificate issued by a Certification Authority (CA). The certificate binds the public key to the identity 
of the entity, given as an X.500 Distinguished Name (DN), as specified by the security policies. 

Note that for TRUMPET, the owner of the keys are the MAEs as opposed to human operators. Human 
operators may also have asymmetric keys for authentication towards the management system, but this is 
related to intra-domain security and is out of the scope of TRUMPET. 

4.2.3.1.1  Storage of Private Keys 

In the TRUMPET experiments, the private keys are stored on disc, in encrypted form. It must be decrypted 
and transferred to memory before it can be used. For TRUMPET, this decryption / transfer will take place 
when the MAE is started. The private key will be kept in memory by the SSO object, indexed by the MAE 
identity.  

4.2.3.1.2 Storage/Caching of Public Keys and Certificates 

The public keys of local entities (MAEs) are stored in the same way as their private keys. Storage needs not 
be in the form of certificates, since the local storage in any case has to be trusted for the private keys. The 
public key is indexed by the MAE identity, and the key is available to the SSO. 

The public key of the root-CA can be stored in the same way as the public keys of local entities. 
Alternatively, this key can be stored in the form of a self-signed certificate issued by the root-CA. In any 
case the key must be available to the SSO object. 

The public key of a peer entity is accessed by obtaining the X.509 certificate of the entity. This is the task of 
the Certificate Handling object. A certificate may be fetched from the issuer CA (or from other external 
sources) by use of the LDAP protocol. There is no need to secure this operation, as it is a pure read 
operation of signed information (certificate). Depending on local policy anything from only the peer’s 
certificate to all certificates in the forward certification path may be fetched. If a certificate is fetched from the 
issuer CA, it can always be assumed to be valid, since a CA should never give away a certificate that has 
been revoked. 

Certificates may be cached locally according to local policy, and kept in the cache as long as permitted by 
local policy. If a locally cached certificate is used, a check against CRLs should be done. This implies that 
CRLs must be fetched regularly from the relevant CAs. Note that CRLs are also signed by the CA. Each time 
a certificate is fetched from a CA, it is also stored in the cache, unless this feature is explicitly disabled. Since 
inter-domain operation using a hierarchically structured certification system may involve retrieval of a lot of 
certificates belonging to intermediate CAs, it is especially important to cache the certificates of CAs. 

Caching of certificates and CRLs opens an important issue : availability of the system versus security. 
Availability in this context means not only that the information must be accessible (which without caching 
must rely on on-line services provided by CAs), but also that the real-time requirements of the management 
applications are met. On the other hand use of cached information implies trust that this information is 
correct. The simple caching procedure outlined above may be enhanced by : 

• Read-forward : each time a cached certificate (or CRL) is used, the version number is verified with the 
CA. If it matches, the cached information is used, else the cache is discarded and the certificate (or CRL) 
is fetched from the CA. This is particularly useful for large amounts of information, like a CRL or a 
complete forward certification path, and probably meaningless for one certificate. This policy has the 
benefit of being initiated by the user. 

• Write-back : each time a CA modifies revokes a certificate, it sends a warning to its clients. This policy 
has the benefit of being efficient in terms of speed, but it depends on the CA being aware of who its 
clients are and how they can be reached. Also, a breach in the connectivity between a user and the CA 
will pass unnoticed. 

The standard way of storing certificates is by use of an X.500 directory. This is not used by TRUMPET 
because maintenance of the information in the directory is considered too complex. Use of the LDAP 
protocol enables any kind of certificate storage to be used by a CA, even an X.500 directory. 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

© 1998 Trumpet Consortium  Page 39 

4.2.3.2 Obtaining Certificates for your Management System 

For your management system MAEs to be authenticated by the remote management systems, they must 
have public-private key pairs; in the TRUMPET architecture, the public key must be certified by a 
Certification Authority (see Section 4.2.5.1). This sub-section describes how to have public keys certified 
and other related management operations.  

Below there is one section for each SECUDE command needed to manage the public keys of a management 
system.  

If SECUDE is not started, start it by typing3 : 
 
Secude 
 

4.2.3.2.1  Create a User PSE 

For each MAE, a PSE must be created. A user PSE is created by : 
 
secude> psecrt -v -k 1024 [-p <pse_name>] “cn=MAE,ou=NR,o=TRUMPET 
Project” 
 

You find a suitable DN for your purpose and replace the one above in the command. When there is only one 
MAE to be certified the –p option can be omitted : as no -p option is given, the PSE will be put on 
$HOME/pse (the default PSE). 

http://www.darmstadt.gmd.de/secude/Doc/htm/utilusgr.htm describes this command in more detail. 

4.2.3.2.2  Make a Certification Request 

Having created a user PSE, you will need to make a certification request for it. You do this by doing : 
 
secude> pem CERT-REQ [-p <pse_name>] -o cert.pto 
 

The certificate request will be put on the file cert.pto. You then should send the cert.pto file by mail to the 
certifying CA (i.e. to trumpet@nr.no). 

http://www.darmstadt.gmd.de/secude/Doc/htm/utilpegr.htm gives the parameter description to PEM. 

4.2.3.2.3 Install / Caching a Certificate 

A certificate issued as the result of a certification request, is accepted by the requester by doing : 
 
secude> pem -v -I [-p <pse_name>] -i cert.issued -u yes 
 

The file cert.issued contains the issued certificate. The -I option tells that scanned issuer certificates shall be 
stored as trusted keys in the local PKList. The PKList contains public keys to be trusted in the 
validation of signatures and message encryption. 

PEM will detect which certificate you are trying to install, and ask you if you want to do this.  

To cache a certificate you can also do a  

                                                                 
3  When SECUDE is run on Solaris 2.5, the following export commands should be done in an appropriate shell prior to 

issuing SECUDE commands : 
 export HOME=/path/to/secude/pses/Home  

export SECUDE_ETC=/path/to/secude/etc  
export LD_LIBRARY_PATH=$LD_LIBRARY_PATH:/path/to/secude/lib  
export PATH=/path/to/secude/bin:$PATH 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

Page 40  © 1998 Trumpet Consortium 

 
secude> psemaint addpk <certificate> 
 

see http://www.darmstadt.gmd.de/secude/Doc/htm/utilpegr.htm 

4.2.3.2.4 Show Trusted Certificates 

To investigate your user PSE, do a : 
 
secude> psemaint show [ PKList | PKRoot | FCPath | Cert] 
 

If you type PKList, your set of trusted certificates will be displayed. PKRoot will show the certificate 
belonging to the root in your PKI, FCPath will show your Forward Certification Path and Cert will show 
your own certificate.  

4.2.3.2.5 Uninstalling / decaching a certificate 

To delete a public key from your PKList do a 
 
secude> psemaint delpk <issuer> <serial number> 
 

or  
 
secude> psemaint delpk <owner> 
 

see http://www.darmstadt.gmd.de/secude/Doc/htm/utilpegr.htm 

4.2.3.2.6 Creating the Credentials 

The credentials file cred is the file where the SMP reads the PSE associated with each MAE distinguished 
name. To make the credentials of all the secured MAE known to the SMP: 
 
secude> seclogin –p <pse_name1> 
secude> seclogin –p <pse_name2> 
… 

Check the contents of the credentials file cred with : 
 
secude> seclogin –l 
 
CN=MAE_name1, OU=Sema, o=TRUMPET Project 
            /usr/home/~/name1.pse 
CN=MAE_name2, OU=Sema, o=TRUMPET Project 
            /usr/home/~/name2.pse 
… 
 

4.2.3.2.7 User Commands 

User commands for signing / encrypting / checking of messages are not discussed in detail, as these 
operations are performed by the SSO via the GSS-API in the TRUMPET SMP. But the commands are 
described in the standard help system. Here are a few commands just to test your installation : 
 
secude> pem MIC-CLEAR -i <inp.file> -o <outp.file> 
secude> pem ENCRYPTED -i <inp.file> -o <outp.file> 
secude> pem -i <inp.file> -o <outp.file> 
 

The first two commands will sign and encrypt, respectively, the contents of a file inp.file and then leave the 
output on the file outp.file. The third command will take a signed / encrypted file inp.file as input and then 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

© 1998 Trumpet Consortium  Page 41 

leave the decrypted version on a file outp.file. You can use these three commands to sign / encrypt some 
text, and then check the signature, or decrypt the text to see if the original is restored. You may also alter the 
signed / encrypted messages with a text editor and then try to check the signature or decrypt afterwards to 
see what happens. 

4.2.3.3 Certificates Retrieval Management 

SECUDE 5.1 provides a function to retrieve certificates from an LDAP server. For your management system 
to be able to authenticate remote management systems, it must be configured in order to retrieve the public 
key certificates of those systems. 

4.2.3.3.1 Accessing the TRUMPET LDAP Server 

You will need to set two environment variables in order to enable SECUDE to access the TRUMPET LDAP 
server : 
 
export SECUDE_LDAP_LIB=/path/to/LDAP/lib/libldap.so 
export SECUDE_X500=aldebaran.nr.no:1521 
 

Note: if aldebaran is not known to your DNS use: 
 
SECUDE_X500="156.116.2.200:1521"; export SECUDE_X500 
 

4.2.3.3.2 Querying the Server 

Everybody could try to retrieve certificates from the server and thereby check the installation, by doing : 
 
secude> psemaint -D 
PSE pse> retrieve “ou=NR,o=TRUMPET Project” 
 

and ask for the CA certificate. 

4.2.4 Access Control 

4.2.4.1 Access Control Principles 

The TRUMPET access control architecture is based on [ITU-T X.812] which specifies an access control 
framework, and [ITU-T X.741] which specifies a model for controlling access to management information and 
operations. The access control profile AOM24322 (Access Control List (ACL) with Item Rules) [ISP 12060-9] 
will be used in TRUMPET. 

4.2.4.2 Access Control Architecture  

The basic entities  and functions  involved in access control are the initiator, the target, the Access Control 
Enforcement function (AEF) and the Access Control Decision function (ADF). The access request 
represents the operation and operands that form part of an attempted access. The AEF ensures that only 
allowable accesses, as determined by the ADF, are performed by the initiator on the target. 

Initiator
Submit
Access
Request

TargetAEF

ADF

Decision
Request

Decision

Present
Access
Request

 

Figure 15: Generic Access Control Architecture 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

Page 42  © 1998 Trumpet Consortium 

In TRUMPET access control is applied to management associations and management operations. Figure 16 
shows the global access control architecture. The black boxes refer to locations where the access control 
mechanisms will be built into the system. Use of Privilege Attribute Certificates (PAC), where a privilege 
attribute server  (PAS) in the initiator domain (or perhaps even an external TTP) signs a certificate for the 
access rights granted to the requesting entity, is for further study in TRUMPET.  

Target Domain

TTP

Initiator Domain

Management
requests S_MIB

MAE MAE

PAS

 

Figure 16: TRUMPET Access Control Architecture 

In the initiator domain, access control is applied to outgoing management association requests. In the target 
domain, access control is applied to incoming management association requests and incoming management 
operation requests. 

4.2.4.2.1 Access Control Information Model 

The Access Decision Function requires information to decide whether an access request should be granted 
or denied. The types of access control information used are: 

• the identity of the initiating management application entity (MAE) of the access request (Initiator ACI) 

• the management information identities to which access has been requested (Target ACI) 

• and access control rules which represent the access control policy to be applied. 

AC Rule(s)

AcMIB

ADF

SMASC

Initiator ACI Target(s) ACI Permission

 

Figure 17: Access Control Information - Data Flow 

Initiator ACI 

The initiator ACI consists of the authenticated identity of the initiating MAE (AE Title). In TRUMPET 
authentication and access identity will be the same. 

Target ACI 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

© 1998 Trumpet Consortium  Page 43 

The target ACI identifies a management information entity, either a MAE or MO instance, access has been 
requested to.  

Access Control Rules 

The access control rules represent the permitted operations and the conditions upon their execution in an 
access control domain. There are five classifications of access control rules which are to be applied by the 
Access Decision Function (ADF) in the following order [ITU-T X.741]: 

Global deny rules; access control rules that deny access to all targets in that domain with respect to 
particular initiators. 

Global deny rules will be used to realise access control on management associations. If a global rule 
denies access for the initiator the association establishment will be denied. 

Item deny rules; access control rules that deny access to specific targets. 

Global grant rules; access control rules that grant access to all targets in that domain with respect to 
particular initiators. 

Item grant rules; access control rules that grant access to specific targets. 

Default rules; Default rules are used for making access decisions when no global or item rules apply. 

 
Component Type Comment 

Initiators InitiatorGroup 1-* 
Targets TargetGroup 0-* (if not present => Global Rule) 
Operations Enum(Operation) 0-5 
Permission Enum(Permission) 1 

Table 4: Elements of access control rule 

4.2.4.2.2 Association Access Control 

Access control is performed as an integral part of the establishment of a secure management association.  It 
will be enforced in the initiator and the target domain to ensure that the initiator MAE is authorised to 
establish a management association to the specific target MAE. 

It is assumed that the initiating entity has an identity assigned by the initiating system during the login 
procedure. Authentication and access identity are the same in the TRUMPET security package. Access is 
denied, if the initiator is not allowed to do anything on the target system. 

4.2.4.2.3 Operation Access Control 

The ADF bases its decision on the requested management operation and identification of the target objects 
together with the retained ACI,  the access control rules and the contextual information. It uses the access 
control rules to determine whether the initiator may access a particular target in the inter-domain MIB. To do 
this, the <Initiator, Target> pair is mapped to the access rights (of the Initiator) in the access control rules 
according to the above priority. If access to the target is granted, the MAE may apply the management 
operation to the target. 

4.2.4.3 Management of Access Control Information 

4.2.4.3.1 Access Control Administration Tool 

The Access Control Administration Tool provides a graphical user interface to create, change and display 
the access control information. It provides comfortable means to maintain the Access Control MIB which is 
used by the access control decision function. The GUI is structured in five tab-panels which are mapped 
onto their corresponding files: 

• File Panel 

• Group Target Panel 

• Group Initiator Panel 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

Page 44  © 1998 Trumpet Consortium 

• Rule Panel and  

• Default-Rule Panel 

The user will be able to create a new domain but he can not delete a domain throughout the GUI. The latter 
needs to be done on the operating system layer. The remainder of this section describes the various GUI 
commands. 

File Panel Window 

This panel allows specify the address of the administration server host and the name of the 
Access Control MIB. First, the user needs to enter the address of the server host in the text 
field “Server Address”. After pressing the Return button or the button “Contact” the connection 
will be created. 

The text field “Directory Location” is used to enter the pathname of the directory where the 
Access Control MIB is located or going to be created. Following this, three actions are 
available to the user: "New" creates a new MIB, "Open" opens an existing MIB, and "Save" 
stores current changes to the selected location. 

 

Figure 18: File Panel 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

© 1998 Trumpet Consortium  Page 45 

Target Panel Window 

The user can manage the target - file with this window. By clicking on “<NEW>” in the group target list a 
new group target is created. A dialog will appear where the user can edit the identity of a group target. Click 
on the entries in the group target list, but not the “<NEW>, for details in the target list. If a entry in the 
group target list is double-clicked the identity of a group target is changeable. One click on the “<NEW>” 
causes the “New Target Dialog” to appear, if before a group target was selected. With this dialog the user 
will be able to create a new target with identity, level and scope. The new generated target belongs to the 
chosen group target. If the user double-clicks on an entry of the target list the chosen target attributes can 
be changed. 

 

Figure 19: Target Panel 

Initiator Panel Window 

With this window the user can make changes in the initiator file. The functionality is the same like the first 
one mentioned above. The only difference is that the initiator do not have either a level or a scope. 

 

Figure 20: Initiator Panel 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

Page 46  © 1998 Trumpet Consortium 

Rule Panel Window 

The rule file was changed and was created by the rule panel window. In the first list called “Rule ID:” the 
user can edit the name of a rule. In the other lists it is possible to add or remove operations, group initiators 
and group targets belonging to the chosen rule. For adding an item the user should click on the “<ADD>” 
entry and for deleting he has to double-click on the item which should be removed. In the permission part 
the user is able to select only one of the possibilities as stated in Figure 3. 

 

Figure 21: Rule Panel 

Default Rule Window 

Here the user can change the default rule file. For every action like “GET” for instance there are five 
possibilities available. 

 

Figure 22: Default Rule Panel 

4.2.4.3.2 Access Control Configuration Files 

The access control domains used in a management application are configured by ASCII files contained in 
UNIX directories. These directories are specified in the security profile for each <initiator,target> pair. The 
directory must contain the following files (filenames are fixed) : 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

© 1998 Trumpet Consortium  Page 47 

• initiator.MIB  contains a set of initiator groups which can be referred by rules. 

An initiator group definition consists of a name followed by at least one initiator name (string DN). Note, 
that each element has to be placed on a separate line. A definition will be closed by a line starting with 
the character ‘#’. 

Example : 
 
; Example Domain - Initiators (Managament Application entities) 
 
EPFL 
 cn=MAE1, ou=EPFL, o=TRUMPET Project 
 cn=MAE2, ou=EPFL, o=TRUMPET Project 
# 
GMD 
 cn=MAE1, ou=GMD, o=TRUMPET Project 
 cn=MAE2, ou=GMD, o=TRUMPET Project 
# 
NR 
 cn=MAE1, ou=NR, o=TRUMPET Project 
 cn=MAE2, ou=NR, o=TRUMPET Project 
# 
Ascom 
 cn=MAE1, ou=Ascom, o=TRUMPET Project 
 cn=MAE2, ou=Ascom, o=TRUMPET Project 
# 

 

• target.MIB  contains a set of target groups which can be referred by rules. 

An target group definition consists of a name followed by at least one target. Note, that each element 
has to be placed on a separate line. 

A target is defined by the name of a base object instance (string DN) optional followed by scope in 
brackets. A scope is specified according to this: 

[*]  whole sub-tree 

[-n]  base to nth Level 

[n]  individual Level n 

A definition will be closed by a line starting with the character ‘#’. 

Example : 
 
; Example Domain - Targets 
 
; the user subtree 
User876394426 
 user=876394426, systemId=xuser_SL_GMD_de[*] 
# 

• rule.MIB describes the rules of the access control domain 

A rule definition consists of a name followed by at least one initiator group reference, a set of target 
group references and an access right specification. The different parts are separated by a line start ing 
with the character ‘-’ (minus). 

The access rights are defined starting with the permission followed by an optional list of operations. If 
no operation is specified the rule is valid for all operations. 

A definition will be closed by a line starting with the character ‘#’. 

Example : 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

Page 48  © 1998 Trumpet Consortium 

 
; Example Domain - Access Control Rules 
 
AssociationDenied_EPFL 
 EPFL 
 - 
 - 
 deny 
#  
 
AllAllowed_GMD 
 GMD 
 - 
 - 
 allow 
# 
 
GetAllowed_Ascom 
 Ascom 
 - 
 - 
 allow get 
# 
 
UserSubtreeAllowed_NR 
 NR 
 - 
 User876439426 
 - 
 allow 
# 
 

• ruleDefault.MIB contains the default rule of the access control domain 

A default rule is specified by a line with one permission for each operation separated by ‘:’. The 
sequence of operations is  : 

 get, set, create, delete, action 

Example : 
 
; Default permission for 
; get:set:create:delete:action 
deny:deny:deny:deny:deny 

 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

© 1998 Trumpet Consortium  Page 49 

4.2.5 Operation of a Certification Authority 

4.2.5.1 Certification Hierarchy 

TRUMPET makes use of the certification hierarchy presented in Figure 23. The Root CA is operated by NR 
and corresponds to an Inter-Domain Management CA. In other words TRUMPET operates its own PKI, the 
Root CA in Figure 23 is the root of a private certification hierarchy. 

Root CA
DN: o=TRUMPET Project

Organisational CAs
Sample RDN: ou=NR

MAE Certificates
Sample RDN: cn=MAE  

Figure 23: Certification Hierarchy 

The Organisational CAs in Figure 23 represent the CAs of the participating providers. Each provider 
running a TMN system that participates in inter-domain management shall operate a CA. These CAs issue 
certificates for application entities, but it is a local matter for a particular organisational CA to decide if it will 
have subordinate CAs to issue the user certificates.  

Organisations wanting a certificate for an MAE in TRUMPET can just send a certification request for such 
an MAE according to Section 4.2.3.2 and ask NR to create and operate a CA for them. However, 
organisations insisting on administrating a CA on their own, can do so and the instructions for how to do 
this is given below. Organisations having NR operate their CA do not have to care about the contents of the 
rest of this chapter. 

4.2.5.2 Having your Organisational CA Certified by the Root CA 

Before doing the operations described below you will need to set the environment variables as specified in 
Section 4.2.3.2. 

4.2.5.2.1 Creating your Organisational CA 

A CA is created by:  
 
secude> cacrt -v -c new.ca -k 1024 

You will be prompted for a PIN code to be used in future access to the CA. You will als o be prompted for the 
DN of the CA (unless you supply this as the last parameter to cacrt, which you may do). A key pair will be 
generated for you and the CA and it’s PSE will be put on a directory named $HOME/new.ca. 

http://www.darmstadt.gmd.de/secude/Doc/htm/utilcagr.htm gives the details of this command. 

4.2.5.2.2  Make a Certification Request for your Organisational CA 

Having created an organisational CA, you will need to make a certification request for it. You do this by 
doing : 
 
secude> pem CERT-REQ -c new.ca -o cert.pto 

The certificate request will be put on the file cert.pto. You then should send the cert.pto file by mail to the 
certifying CA (i.e. to trumpet@nr.no). 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

Page 50  © 1998 Trumpet Consortium 

4.2.5.2.3  Install a Certificate of Your Organisational CA 

A certificate issued as the result of a cert ification request, is accepted by the requester by doing : 
 
secude> pem -v -I -c new.ca -i cert.issued -u yes 

The file cert.issued contains the issued certificate. The -I option tells that scanned issuer certificates shall be 
stored as trusted keys in the local PKList. The PKList contains public keys to be trusted in the validation of 
signatures and message encryption. 

PEM will detect which certificate you are trying to install, and ask you if you want to do this.  

4.2.5.3 Running your Certification Authority 

4.2.5.3.1  Issue a Certificate using Your CA 

A certifying CA will issue the following command in order to answer to a certification request : 
 
secude> certify -v -l 990630215959Z -c certifyingCA.ca -C TRUE cert.pto 
cert.issued 

PEM will show the prototype certificate and ask if you would like to sign it. The -l option will ensure that the 
issued certificate is valid until end of June 1999. No certificate renewal actions should thereby be necessary 
for TRUMPET partners during the project lifetime. The issued certificate will be put on the file cert.issued. 
The -C TRUE option tells that the certified entity will be able to operate as a CA. If this shall not be the case, 
then -C FALSE should be used instead. 

4.2.5.3.2 Issue of Certificate Revocation Lists 

To issue a Certificate Revocation List you may first identify the certificate(s) to revoke. You then revoke the 
certificate(s) by doing : 
 
secude> psemaint -c new.ca 
PSE new.ca> revoke 

if new.ca has issued the certificate. You will be asked for the serial number of the certificate to revoke. If you 
do know the serial number, the 
 
PSE new.ca> causers 
PSE new.ca> caserialnumbers <DN> 

commands may be helpful. You will be asked if you would like to sign the CRL, and you should do so.  
 
secude> pem CRL -c new.ca -o pemCRLs.txt 

The above command will put the CRL in a PEM message to be distributed. For a user to install a CRL in the 
local PSE, a simple PEM SCAN will do : 
 
secude> pem -i pemCRLs.txt 

The file pemCRLs.txt contains the actual CRL. 

The : 
 
PSE new.ca> caprolong 

will prolong the validity of an existing CRL, in case there are no new certificates to revoke. 

4.2.6 Running the Certificate Directory Server 

In TRUMPET there is one LDAP server, located at and maintained by NR (at least until some organisation 
insist on operating their own CA). Access rights are set up such that only retrieval is permitted from 
outside, and certificate retrieval can be done as explained in Section 4.2.3.3. 

Sections 4.2.6.1 and 4.2.6.2 gives the directory structure. Section 4.2.6.3 is for the time being for NR only. 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

© 1998 Trumpet Consortium  Page 51 

4.2.6.1 Directory Structure 

The directory structure should resemble the certification hierarchy. Figure 24 shows the structure that is 
used in TRUMPET. The dotted objects are objects needed for each organisation being supported. An 
application certificate is stored in an applicationEntity belonging to the organisation owning the 
application. 

top & organization &
certificationAuthority

top & organizationalUnit &
certificationAuthority

top & applicationEntity &
strongAuthenticationUser

DN: o = TRUMPET Project

RDN: ou = ’orgName’

RDN: ou = ’applName’

 

Figure 24: Certificates Directory Structure 

4.2.6.2 LDIF Description of the Server 

An LDIF description for the TRUMPET server will look something like this (the rootdn from etc/slapd.conf 
must be present in the directory structure) : 
 
dn: o=TRUMPET Project 
objectClass: top 
objectClass: organisation 
objectClass: certificationAuthority 
o: TRUMPET Project 
cACertificate: 
pemCRL: 
 
dn: ou=NR,o=TRUMPET Project 
objectClass: top 
objectClass: organisationalUnit 
objectClass: certificationAuthority 
cn: NR 
cACertificate: 
pemCRL: 
 
dn: cn=MAE,ou=NR,o=TRUMPET Project 
objectClass: top 
objectClass: applicationEntity 
objectClass: strongAuthenticationUser 
cn: MAE 
userCertificate: 
 

The last entry is for administrative purposes. New organizationalUnit nodes and subordinates will be 
added according to how NR is inserted above. 

4.2.6.3 Updating the Server with new Certificates and CRLs 

This is done by using the commands below : 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

Page 52  © 1998 Trumpet Consortium 

 
secude> psemaint -c my.ca -D 
PSE my.ca> caucert2dir 
PSE my.ca> enter [cACertificate | revocationList] 

caucert2dir is used when the CA wants to insert an issued user certificate, enter is used to insert its 
own CA certificate or CRL. 

 

4.2.7 Security Support Object 

The SSO is a set of API to provide security services. It interfaces with an commercial dynamic library 
(SECUDE) which has to be in the “dynamic library path”. 

Secude is a security product that provides a generic (GSS) security interface and also a toolkit to manage 
keys and certificates. These both aspects are closely linked, and the result of the GSS API hardly depends 
on the key management. 

For a MAE, the use of the SSO object needs at least to first create a User PSE and Credentials (see 
Management of authentication keys chapter). 

4.2.8 Secure Management Association 

The Secure Management Association is that component which provides security to the MAE by the co-
ordination of the trumpet security objects (Access Control, Security Profiles and SSO) and by the 
generation of security events to the SELF. 

 

Communication with the SELF 

The parameters of the communication can be configured using the environment variables: 

• XUSER_MANAGER_ID which specifies the Managed Object Instance for a manager MAE (default value 
= 3), 

• XUSER_AGENT_ID which specifies the Managed Object Instance for an agent MAE (default value = 4), 

• SELF_HOST which specifies the hostname on which the SELF is running (default name = localhost), 

• SELF_PORT which specifies the port on which the SELF is listening (default value = 50095). 

 

Co-ordination of the security objects 

In the D8 document, four Security Profiles have been defined, with their security rules. The co-ordination of 
the security object directly stems from this definition. 

Initially designed to run test, the possibility to re-define the security rules for each profile has been added. 
This option is use when the environment variable RULES_PATH is found and when this variable leads to a 
file named “rulesProfiles.txt”. Otherwise the security rules used for the four profiles are those defined in the 
D8 document. 

 

Configuration of the security rules for each profile 

In the file rulesProfiles.txt, the configuration of each profile is made on three criterions: 

• The type of authentication (nickname = AUTH), 

• The type of control on the accesses (nickname = AC), 

• The type of security to apply on the exchanges (nickname = SEAL). 

Note: the generation of security events is always active. 

The configuration of the profiles is made in the order: NULLP/MIN/BASIC/ADV.  



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

© 1998 Trumpet Consortium  Page 53 

The rules definition has to respect the format: AUTH=value AC=value SEAL=value. Where the values 
correspond to: 

• AUTH : 

• 0 = simple authentication, 

• 1 = secured unilateral authentication (only the initiator authenticates itself), 

• 2 = secured mutual authentication. 

• AC   :  

• 0 = no Access Control neither on associations nor on managed object operations, 

• 1 = Access Control on associations, 

• 2 = Access Control on associations and on managed object operations. 

• SEAL :  

• 0 = no security applied on exchanges, 

• 1 = integrity applied: signature of  the outgoing messages, verification of the incoming messages, 

• 2 = confidentiality applied: encryption of exchanges. 

 

Note: the lines that don’t respect the format “AUTH=value AC=value SEAL=value” are considered as 
comment. 

For example the default Trumpet rules would be defined this way: 
##################### 

# The default rules # 

##################### 

AUTH=0 AC=0 SEAL=0 

AUTH=0 AC=1 SEAL=0 

AUTH=1 AC=2 SEAL=1 

AUTH=2 AC=2 SEAL=2 

 

4.2.9 Adapter Object 

The Adapter object is a set of API to secure the XMP function, it modifies the MAE’s exchanges to insert 
security. 

This API doesn’t need a specific configuration effort. 

4.2.10 Audit and Alarm 

4.2.10.1 Overview of Audit and Alarm Management 

Security audit and alarm management is dealing with : 

• auditing, i.e. collecting information, about the usage of security services or mechanisms, and more 
generally sensitive resources protected using the security services. The information collection is based 
on the events generated by the security mechanisms and forwarded towards management applications 
and recorded into logs. The collected information is analysed in order : 

• to verify the effectiveness of a given security policy and of its implementation 

• to find out whether resources are misused - and if they are, who performed the misuse and how it 
occurred. 

• recovering from abnormal situations, e.g. when auditing concludes to a security breach, by asking for 
changes in the security policy, restricting the access to some service, etc. 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

Page 54  © 1998 Trumpet Consortium 

Audit and recovery also includes a management facet dealing with administering the logs and the 
forwarding of events, selecting the events that will be considered as being relevant, etc. 

In this schema, the audit analysers (either off-line or real-time) detect security problems and generate 
security events. These events are forwarded and caught by the security alarm processing application, 
handled and filtered-out by the security alarm processing application which might trigger recovery actions 
by providing the security recovery management with the necessary information.  

Audit
Mechanisms
Management

Off-line
Audit

Analyser

Security
Alarm

Management
Application

EFD

Resource

Agent

Events

Set of audited resources and systemsAudit Management System

System A1

EFD

Resource

Agent

Events

System An

Manager

Log1

Log2

Mgmt request

Security related
events

 

Figure 25 : Auditing on Systems Providing no Logging Capabilities 

4.2.10.1.1 Security Event Forwarding and Logging 

The security mechanisms behave as event generators, i.e. sending security relevant events using the M-
EVENT-REPORT service. These events are forwarded towards e.g. the security alarm management 
application and / or the log management application – more generally those of the applications grouped 
under the Audit and Alarm Management "hood", i.e. : 

• the audit mechanism management which also provides for backing-up audit trails which are close to 
overflow; 

• both off-line and real-time event analysers are providing for detecting security related problems within 
the audited (sub)domain. When such a problem is found or suspected, these applications are generating 
security alarms that can be handled by the security alarm management application; 

• the security alarm management application purpose is to raise a flag when security problems have been 
encountered. Such kinds of situations require careful analysis, probably performed by a human being 
who either decides to : 

• ignore the alarm, since no further action is required; 

• triggers some recovery action. 

The event pre-processing function translates a local notification into potential event report. The potential 
event reports are distributed to all EFDs. The event forwarding discriminator is used to determine which 
event reports are to be forwarded to a particular destination during specified time periods. 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

© 1998 Trumpet Consortium  Page 55 

The figure below summarises the management interactions implied by security event reporting. 

Logs Control
Responses Potential

event
report

EFDs
Event

pre-processing

AGENTMANAGERControl
Responses

MO

Notifications

Event Reports

 

Figure 26 : Interactions for Security Event Reporting 

The managed objects notify security related events. Only relevant events are selected by the event 
forwarding discriminator and reported to the manager. The manager can modify event selection conditions 
according to the security policy. The collected events, especially alarms, can be reported in real time, or 
logged into security audit trails for further analysis. The events to be logged are selected according to the 
criteria defined in the log object. 

The Event Report Management Function provides services by which event reports can be distributed. 
Event report distribution means the selection of events to be reported to some designed system, or process, 
within some selected time period. These selections are done by a filtering process using the "Event 
Forwarding Discriminator" managed object. Event Forwarding Control is the ability to initiate, terminate, 
suspend, or resume event reporting through the manipulation of Event Forwarding Discriminator managed 
objects. 

4.2.10.1.2 Management of Event Forwarding and Logging Mechanisms 

For security audit management purpose, management services are required to : 

• create, modify and delete any objects or attributes of managed objects which specify the selection 
criteria for security relevant events, i.e. event forwarding discriminator and audit trail;  

• initiate and terminate the generation of security audit messages; 

• initiate and terminate the generation of security audit records; 

• initiate and terminate the generation of security alarms. 

4.2.10.1.2.1  Audit Objects to be Managed 

The objects that have to be created and managed are security audit trails and event forwarding 
discriminators (EFDs). Security audit trails are used for recording security relevant events generated within 
the local environment and EFDs purpose is the forwarding of events for analysis and / or recording purpose, 
e.g. when no local log facility is available. 

Security audit trails are defined as logs of which records correspond to security relevant events. The logs 
properties provide for : 

• selection of events that are to be logged by a management system in a particular log; 

• an external system to modify the criteria used in logging events; 

• an external system to determine whether the logging criteria were modified or whether log records have 
been lost; 

• control over time during which logging occurs by suspending, resuming and modifying the logging 
scheduling; 

• retrieving and deleting log records; 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

Page 56  © 1998 Trumpet Consortium 

• an external system to create and delete logs. 

Logs (audit trails) store security relevant events. The audit trail pre-processing function receives 
notifications from managed objects (object identified within a given policy as being security relevant) within 
the local system and forms potential audit trail records. These audit trail records are (conceptually) 
distributed to all logs contained within the local open system - these records are perceived as a discriminator 
input object for the purpose of discrimination by the audit trail. The characteristics the input object must 
satisfy to be logged are specified by the audit trail discriminator construct. When selected for logging, the 
information is supplemented with additional information generated as part of the logging process (record 
identifier, logging time). 

Event forwarding discriminators are managed objects allowing the selection of event reports to be sent to 
particular, specified, managing systems. They are also providing for : 

• control over the forwarding of events by suspending, resuming and modifying the scheduling of their 
forwarding; 

• the ability to modify the conditions used in the reporting of events; 

• the ability to specify back-up locations when no primary location is available. 

4.2.10.1.2.2 Audit Mechanism Configuration 

Defining an audit configuration for a system or a security service consists in stating which means have to 
be used and how these are configured, which are the objects to be created and what the values of these 
attributes are. Once defined, the application will provide the end-user with the ability to name and save the 
defined configuration. 

Setting up an audit then consists in  : 

• determining those of the managed objects and the events they are generating which have to be audited; 

• selecting the trail(s) in which the selected events will be recorded. 

Selecting objects and events subject to auditing thus involves the setting of audit trails and/or EFDs 
discriminator constructs. In effect, the discriminator construct is a filtering mechanism which acts on 
attributes of the discriminator or log input objects. The discriminator construct is a set of assertions about 
the presence or values of attributes, such assertions can be grouped together using logical operators; it 
thus provides the audit administrator with means for indicating the system which events must be either 
recorded or forwarded (e.g. by subject or object identity). 

In order to be able to configure other systems or security services based on the re-use of a defined 
configuration, most of the provided information can be re-used - the value of the discriminating construct 
excepted. This type of value has to be adapted to each system or security service especially when the 
discrimination is based on the managed object class and/or managed object instance. These values have to 
be changed according to the system and/or security service to be audited this can either be done 
automatically (if rules for writing discriminator constructs were defined) or the end-user can be requested by 
the application to update the discriminating constructs according to the system and / or security service. 

Because of the relationship between audit and recovery through : 

• their complementary goals, 

• the generation of, and the reaction to, security alarms, 

• the common means (EFDs) used for forwarding relevant events towards remote audit trails and security 
alarms administrators, 

and the similarities of the tasks to be performed, it makes sense to configure security audit and detection of 
simple security alarms at the same time. "Simple alarm detection" is used here in contrast to real-time 
intrusion detection and refers to events generated by managed objects of which the types are referenced as 
security alarms, i.e. integrity violation, operational violation, physical violation, security service or 
mechanism violation and time domain violation. 

4.2.10.1.2.3 Management of Security Event Forwarding 

The event report management is realised with : 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

© 1998 Trumpet Consortium  Page 57 

• the definition of flexible event report control service which allows systems to select which event reports 
are to be sent to particular managing systems; 

• the specification of the destinations (e.g. the identities of managing systems) to which event reports are 
to be sent; 

• the specification of a mechanism to control the forwarding of event reports, for example by suspending 
and resuming their forwarding; 

• the ability for an external managing system to modify the conditions used in the reporting of events; 

• the ability to designate a backup location to which event reports can be sent if the primary location is 
not available. 

4.2.10.1.3 Security Alarm Management 

4.2.10.1.3.1 Alarm Management Configuration 

The mechanisms needed for security alarms management can be classified into three functions : alarms 
collection, alarms examination and alarms processing : 

• Alarms collection deals with reporting and logging the alarms, and uses resources similar to those used 
for auditing purpose, namely EFDs and logs; therefore the related section will focus on the specific 
aspects of the management of those resources; 

• Configuration of alarms examination includes such activities as configuring alarm display; 

• Alarms handling requires to configure the actions to be taken on receipt of an alarm : 

• ignore, 

• submit to the security alarm administrator, 

• (forward to the security recovery component for immediate triggering of a recovery mechanism.) 

Alarms
examination

Alarms
collector

Alarms
handling

Recovery management

Agent

 

Figure 27 : Overview of Alarm Management 

4.2.10.1.3.1.1 Alarm Collection Configuration 

Although the nature of the security alarms requires that they must normally be reported, the capability to 
select those of the alarms which will be forwarded within the managed systems will be provided to the 
security alarm administrator. This capability would turn out to be useful in such a situation as repetitive 
alarm generation due to maintenance works, or in order to dispatch security alarms to different alarm 
collectors according to their types, causes, etc. The latter point deserves to be developed, since the EFDs 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

Page 58  © 1998 Trumpet Consortium 

are the means to physically reflect the splitting of a system into several domains in the case a managed 
system contains objects or mechanisms belonging to distinct domains or sub-domains. 

In order to avoid having alarms mixed with other events types, EFDs dedicated to security alarms forwarding 
are to be used within the agents. The responsibility for configuring those EFDs is given to the security 
alarms administrator. The configuration application provides the administrator with the capabilities to 
specify EFDs and discriminator constructs with a similar interface to that used for audit messages 
forwarding; the interface is specialised to fit the attributes which are specific to alarm notifications. 

Because there is no strong need for splitting the alarms filtering function between the local EFD filter and 
the log filter located at the alarms collector application level, configuration of security alarms logs will 
implicitly use a pass-through filter. Thus the log mechanism is only used to register an alarm notification as 
a securityAlarmReportRecord . Therefore the specification of security alarms logs will present a simplified 
but similar aspect as that of security audit trail logs, where only the attributes administrativeState, 
logFullAction, maxLogSize and capacityAlarmThreshold will have to be specified using the same 
techniques as for audit trails. 

4.2.10.1.3.1.2 Configuration of Security Alarms Examination 

Since alarms displaying will reflect the possible subdivision of the domain into several domain portions, the 
configuration of this management function is used as the means to define that subdivision. Two different 
techniques for grouping the objects are provided to the administrator : topological grouping of systems and 
functional grouping of alarms. The first technique permits the administrator to display the alarms sorted by 
their origin, the second one, sorted by their nature. 

Topological grouping is achieved by determining sorting criteria on the distinguished name of object 
instances. 

Functional grouping is described by selecting a combination of : 

• the potential alarm detector : 

• security mechanisms classes or sets of mechanisms classes which generate security alarms, for 
instances access control mechanisms to enable a global watching of unauthorised access attempts, 
or audit mechanisms to have a quick view on error processing alarms  ; 

• classes of objects capable of generating security alarms  ; 

• application entity, this selection based on the alarm detector identity provide for the ability to 
separate alarms generated by audit trail analysers; 

• the event type; 

• the alarm cause. 

4.2.10.1.3.1.3 Configuration of Security Alarms Handling 

Depending on various criteria to be specified by the alarms handling configuration function, uprising alarms 
are submitted to various kinds of treatment or a combination of treatment, namely : 

• immediate forwarding of the alarm to the recovery processing when an immediate reaction is of 
importance (a common example is the detection of a threshold of unsuccessful authentication attempts 
on a same account which would require – if the authentication policy states it  – to break the 
communication where those attempts occur);  

• transfer to the alarms displaying function for acknowledgement and, possibly, recovery decision; 

• ignore the alarm. 

Combination of two treatments is allowed to the alarm administrator ; let us take the above example of a 
threshold of unsuccessful authentication attempts : in addition to the immediate recovery decision to break 
the communication, this alarm should be submitted to the alarm administrator in order to take a mean term 
recovery action such as locking the threaten account. 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

© 1998 Trumpet Consortium  Page 59 

4.2.10.1.3.2 Security Alarms Processing 

A first aspect of Security Alarm Management is the off-line analysis of the alarms having been generated. 
For this purpose the mechanisms and solutions defined for the off-line security auditing will be re-used, i.e. 
logging capabilities and audit trail analysis. 

A second aspect is the detection and the handling of the security alarms that occurred in the considered 
audit-domain and to display them to the security alarm administrator who is thus able to react accordingly, 
i.e. by taking into account the information provided by the alarm. 

4.2.10.1.3.2.1 Displaying Security Alarms 

After collection and logging an alarm has passed through the alarms handling function which might have 
"decided" to submit it to the administrator for examination. The alarms examination function first requires the 
alarm to be sorted according to the criteria defined for the subdivision of the security alarms domain into 
domain portions. This sorting is applied by using the following attributes which permit to identify the origin 
or the nature of this  alarm : 

• the securityAlarmDetector which indicates the security mechanism identifier, object instance which has 
detected the alarm, 

• the managedObjectClass and managedObjectInstance which give the class and instance of the 
mechanism, 

• the serviceProvider which identifies the managed object submitted to the risk, 

• the serviceUser which designates the object responsible for the infringement, 

• the eventType and securityAlarmCause. 

A global view of the alarm state is given to the administrator by displaying the state of every domain 
portions with a visual representation of its state : no pending alarms in the domain, alarms waiting for 
acknowledgement. Depending on the option chosen by the administrator, this global view either indicates 
that there are problems in a (group of) system(s), or that there are alarms of this or that type. 

Then, the administrator can zoom-in on the domain portion he wants to investigate and clear by clicking on 
the corresponding icon. 

The security alarms are displayed in a tabular format, alarms of the same type concerning a same object are 
grouped in a single entry (line) in the table — double clicking on this line brings-up a window providing the 
detail of all the alarms belonging to the group. 

Each table entry may provide all or some of the following information : 

• Status indication : tells whether the alarm has been acknowledged and/or ignored; 

• Time of first alarm : date of the first generation of the alarm concerning a given object; 

• Time of last alarm : date of the last generation of the alarm concerning the same object; 

• Count : the number of occurrences of the alarm;  

• Event type : one of integrity violation, operational violation, physical violation, security service or 
mechanism violation or time-domain violation; 

• Security alarm cause : specifies the cause of the security alarm;  

• Security alarm severity : defines the significance of the security alarm, i.e. one of indeterminate, critical, 
major, minor or warning. 

• Remark  : this item in the table could be replaced by setting the colour of the line to a suitable value; the 
value of this information corresponds to the highest severity of a group of events; 

• Security alarm detector : identification of the alarm detector; 

• Service user : identifies the service-user whose request for service led to the generation of the security 
alarm;  



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

Page 60  © 1998 Trumpet Consortium 

• Service provider : identifies the intended service-provider of the service that led to the generation of the 
security alarm;  

• Additional information : the following information is provided as a managementExtension and might be 
used for filtering alarms. 

• subject : already provided by "Service user". 

• object : identifies the object on which the application of "operation" led to the generation of this 
alarm. 

• object security level : qualifies the degree of protection of the object. 

• subject sensitivity : qualifies the access-rights of the subject. 

• operation : specifies the operation involved in the alarm. 

4.2.10.1.3.2.2 Handling Security Alarms 

The security alarm(s) to be handled are first selected by the user and it (they) might : 

• simply be ignored and removed from the display (the problem is known and no further action is 
required), clicking on an "ignore" button would provide the necessary means; 

• require subsequent recovery action to be undertaken - the alarm being acknowledged once the security 
recovery operation has been triggered by the security alarm administrator. 

Thus, associated with the alarm display window, the interaction means required for fulfilling the previously 
described task has to be available. As an example, the additional information might be input in an area below 
the displayed alarms; clicking on a "forward for recovery" button would send the relevant information 
(alarm(s) and the information provided by the alarm administrator) to the recovery management application. 

4.2.10.2 Management of Audit and Alarm 

The Graphical User Interface of the Security Audit and Alarm management applications is a collection of 
user friendly mask windows which are defined and realised to help the user to access easily the event 
forwarding discriminator construction and the alarm reporting function.  

The GUI is structured in the following way : 

• The top level GUI 

• The GUI for alarm viewing 

• The GUI for EFD management 

• The GUI for log management 

• The graphical editor for building event filters. 

The main goal of the GUI is to allow the user not necessarily familiar with the security management concept 
and the OSI model to be able to access the management functions. This is the reason for which the GUI 
should be user-friendly not only as to how the information is displayed, but also in the manner in which the 
user participates in the management process. 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

© 1998 Trumpet Consortium  Page 61 

Top-Level Window 

This window allows to start the TRUMPET management session. The administrator can select the security 
services to select in the Administration menu : currently only the audit management is implemented; 
potentially, management of the security policy, management of the authentication and access control 
services and key management could be added. The Security Status menu displays the number of security 
alarms for each severity level. Two buttons allow to display more information about the alarms. 

 

Figure 28: Top Level Management Window 

Agent Configuration Window 

This window allows to see each agent configuration from which security alarms will be collected. In its menu 
bar, the administrator can select an audit manager configuration containing some agent bitmaps which he 
can move on the trials bit map and perform actions on them. 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

Page 62  © 1998 Trumpet Consortium 

Agent-EFD Control Window 

This window gives some useful information on the selected agent and controls the EFD on it. The agent 
control panel shows the name and the current co-ordinates of the agent. The user can give the current 
operational state of the agent (present, running, locked, etc.). Using the EFD panel, the user can create a 
new EFD instance in the selected agent. A scroll list shows the EFDs currently associated with the agent; 
by choosing one of the EFD identifier from the list, the user may delete, edit or get help from it. When the 
user clicks on the Modify or Create button, the EFD construction mask window is displayed. 

 

Figure 29 : Agent Control Window 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

© 1998 Trumpet Consortium  Page 63 

EFD Construction Mask Window 

This window contains all the attributes of the EFD class. The security administrator can specify the 
appropriate value to build a new EFD or edit an existing EFD. By clicking on the corresponding button, the 
administrator is displayed a specific window to fill all the EFD attributes fields : Discriminator Construct, 
Start Time, Stop Time, Intervals of Days, Week Mask, Destination, Backup Destination List, Active 
Destination, Administrative State, Operational State, Availability Status, Confirmed Mode.  

 

Figure 30 : EFD Construction Window 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

Page 64  © 1998 Trumpet Consortium 

Filters Editor Window 

This window allows to construct a discriminator graphically. On the drawing area, the administrator has to 
click on a rectangle bitmap and to control it by using the mouse menu button. 

 

Figure 31 : Filter Edition Window 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

© 1998 Trumpet Consortium  Page 65 

Control Window for Managing Logs 

This windows is used for log management. The existing logs are displayed as icons with log names below. 
The security auditor can select a log with the mouse to display the contents of the log or delete the log. He 
can create a new log (Log Creation Window). By double-clicking on the log icon, the administrator can 
display the log attributes. 

 

Figure 32 : Log Management Control Window 

Log Creation Window 

This window allows the creation of a new log. A default log can be created or the administrator can create a 
customised log by specifying – using the same windows as for the EFDs – the discriminator construct, the 
start time, the stop time, the intervals of days, the week mask. He can modify the operational and 
administrative state of the log. 

Log Attributes Display Window 

The administrator can display and modify the attributes of the selected log. 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

Page 66  © 1998 Trumpet Consortium 

Alarm Viewer Window 

This window shows the collected security alarms. Only 10 alarms can be displayed simultaneously. The 
alarm buffer size is limited. The older alarms will be discarded when the buffer is full. 

 

Figure 33 : Alarm Viewer Window 

4.2.11 SELF 

The SELF is the Audit and Alarm agent. It runs using the UNIX shell script “runSelf” from the directory 
/Trumpet.dev/src/securityPackage/self/audagent. It listens to a specific port and when an event is received 
form the SMASC or the Management system, it pre-process it and sends a CMIS M-EVENT-REPORT to the 
Audit and Alarm manager. There two ways to run the SELF script. Either without an argument or using an 
integer as argument which denotes the listening port of the SELF. In the first case there is a default listening 
port. 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

© 1998 Trumpet Consortium  Page 67 

5 SERVICE MANAGEMENT DEVELOPERS MANUAL 

5.1  CPN User Application 

5.1.1 Engineering Object Model 

CustomerGUI

Map IONetworkManager

Connection Site Queue Writer

CPN Server

TextBox Get object
from queue

TCP/IP Socket

CommObjects Package

VirtualCircuit MessageSiteData

 

Figure 34: Engineering Object Model of the CPN User Application 

The CustomerGUI, Map and NetworkManager components extend class NameConstants in order to share 
global constants. 

• CustomerGUI: is an applet designed to display a map on which sites and connections can be displayed 
and modified. The map on which the network is displayed is a background image of the applet.  Buttons 
and checkboxes are placed on the screen in order to allow modification to the network.  Events relating 
to the use of the buttons, mouse actions etc. are caught and methods of the Map class are called to make 
network modifications. 

• Map: the Map component manipulates the map image displayed in the CustomerGUI applet to show the 
location of sites and the connections between them.  Map also holds lists of the current sites and the 
connections between them.  

• Connection: an instance of this type exists for each connection on the map.  It holds the information 
required for each connection and has methods to modify or to obtain information on the connection. 

• Site: an instance of this type exists for each site on the map.  It holds the information required for each 
site and has methods to modify or to obtain information on the site. 

• IO: this component performs the communication between the CustomerGUI and the CPN Server.  It uses 
a Queue class to store outgoing messages.  The CallbackPanel methods are then used to process 
incoming objects. 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

Page 68  © 1998 Trumpet Consortium 

• Queue: this class is used as a FIFO buffer for the objects to be sent to the CPN Server. The IO send 
methods are used to transmit each object as it is removed from the stack 

• Writer: this class is a separate thread started by the IO class. It waits for objects to be placed on the 
Queue, objects are then removed from the queue and sent by the object methods to the CPN Server. 

• CallbackPanel: this class contains the methods for handling the reception of objects from the CPN 
Server. 

• NetworkManager: this class, derived from the CallbackPanel, is used to control all communication 
between the CustomerGUI and the CPN Server. Map functions make calls to this class when transmitting 
objects and NetworkManager calls Map methods when objects are received from the CPN Server and the 
Map needs to be updated. 

• VirtualCircuit: this class, a member of the CommObjects package is used to hold a representation of a 
virtual circuit. It also has methods which can transmit and receive virtual circuit details (i.e. this object) 

• SiteData: this class, a member of the CommObjects package is used to transfer Site information to and 
from the CPN Server. 

• Message: this class, a member of the CommObjects package is used to transfer a list of text messages to 
and from the CPN Server. 

5.1.2 Supported Component Interfaces 

The CPN user application (GUI) has only one interface, which is a connection to the CPN Server component 
via a TCP/IP socket.  The actions required of the CPN Server by the GUI are determined by a transmitted 
keyword and its following data (when applicable), the following table defines the keywords and the expected 
following data. 

 
Keyword Class Used For 

Transmission 
Associated Data 

Types 
Data Contents 

UserDetails  Message String, String Username, Password 
LDAPDetails  Message String, String VASP LDAP Username, Password 
ReserveConnection VirtualCircuit VirtualCircuit Connection details  
deleteConnection Message String Connection Identifier 
modifyConnection Message String, String, String Connection Id, Stop time, Bandwidth 
getConnections Message   
GetSites Message   
AddSite SiteData SiteData Site details  
DeleteSite Message String, String Site name, location 
getBandwidths Message String Connection type for required bandwidth 

(one of Voice, Video or Data) 
VirtualCircuit VirtualCircuit VirtualCircuit New connection details sent by the CPN 

Server, normally in response to a 
getConnnections request. 

The classes referenced above support the following interfaces for transmitting their data. 

METHOD 

SiteData.writeSite 

SYNOPSIS  

 public void writeSite (DataOutputStream dout) 

DESCRIPTION 

This method sends the variables of the class using the passed output stream. 

METHOD 

SiteData.readSite 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

© 1998 Trumpet Consortium  Page 69 

SYNOPSIS  

 public void readSite (DataInputStream din) 

DESCRIPTION 

This method sets the variables of the class with data read from the passed input stream. 

METHOD 

VirtualCircuit.writeVC 

SYNOPSIS  

 public void writeVC (DataOutputStream dout) 

DESCRIPTION 

This method sends the variables of the class using the passed output stream. 

METHOD 

VirtualCircuit.readVC 

SYNOPSIS  

 public void readVC (DataInputStream din) 

DESCRIPTION 

This method sets the variables of the class with data read from the passed input stream. 

METHOD 

Message.addString 

SYNOPSIS  

 public void addString (String s) 

DESCRIPTION 

This method adds the passed string to the list of strings for this message. 

METHOD 

Message.write 

SYNOPSIS  

 public void write (DataOutputStream dout) 

DESCRIPTION 

This method sends each string of the message using the passed output stream. 

5.1.3 Known Bugs 

The following problem has been encountered using the Solaris JDK 1.1.x: 

Bug Id:  4069784 

Synopsis: TimeZone.getDefault() returns incorrect time zone. 

Category: general:classes_util_i18n 

Reported Against: 1.1.2; 1.1; 1.1.3; 1.1.4; 1.1beta3; 1.1fcs; 1.1.1; 1.1.5  

State:  Closed, duplicate of 4059431 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

Page 70  © 1998 Trumpet Consortium 

5.2 CPN Server 

5.2.1 Engineering Object Model 

The CPN structure closely follows that described in deliverable 8. The component hierarchy is shown below: 

CPN

CPN_LIF CPN_SAC CPN_IBCM CPN_SEC

Graphical
User Interface

VASPTCP/IP Socket

Voyager (CPN to VASP) Voyager (VASP to CPN)

Application
Interface

CommObjects Package

VirtualCircuit MessageSiteData

CommObjects Package

VirtualCircuit MessageSiteData

 

Figure 35: Engineering Object Model of the CPN User Application 

All CPN components except for CPN_IBCM extend class CPN_CONSTANTS in order to share global 
constants between all components. 

• CPN: invokes new instances of the other classes required, constructing them with suitable parameters to 
enable communication with the GUI and VASP.  Callbacks from the VA SP via Voyager are also handled 
in this component as the use of Voyager precludes any other component performing this function.  A 
new CPN_LIF class is invoked each time a connection is made to the local socket on which the CPN 
resides.  This component als o receives callbacks from the VASP using Voyager.  This requires that the 
CPN be made “Voyager aware” in order that it can be accessed as a remote object from the VASP.  

• CPN_LIF: is the CPN local interface for interfacing with the local system (currently via the GUI 
application).  This component is threaded which allows more than one user to attach to the CPN.  When 
constructed, the LIF registers itself with the CPN_SAC component.   The CPN_SAC keeps a table of 
each user connection with an associated id. 

• CPN_SAC: the service access control point provides a common interface between local facilities and the 
VASP.  All calls from the LIF and callbacks received from the CPN_IBCM and the CPN components are 
passed through the SAC component. 

• CPN_IBCM: provides the communications interface from the CPN to the VASP and uses Voyager as the 
interface medium.  Voyager allows an association to be made to a remote instance of the VASP and call 
methods of the VASP object such as associate (), get () etc. directly.  

• CPN_SEC: the security interface will handle security issues such as certification and key exchange. 

• VirtualCircuit: this class, a member of the CommObjects package is used to hold a representation of a 
virtual circuit. It also has methods which can transmit and receive virtual circuit details (i.e. this object) 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

© 1998 Trumpet Consortium  Page 71 

• SiteData: this class, a member of the CommObjects package is used to transfer Site information to and 
from the CPN GUI. 

• Message: this class, a member of the CommObjects package is used to transfer a list of text messages to 
and from the CPN GUI. 

5.2.2 Supported Component Interfaces 

The CPN interfaces on one side to the graphical user interface using a TCP/IP socket and on the other side 
to the VASP using Voyager using secure sockets.  Much of the communication between the CPN Server and 
the CPN GUI is through the VirtualCircuit, SiteData and Message classes, refer to the CPN User Application 
sections for their interface descriptions. 

5.2.2.1 Interface to the Graphical User Interface 

The CPN_LIF interfaces to the GUI via a socket.  More than one GUI can be connected to the CPN at any 
one time, a new instance of a CPN_LIF is created for each GUI requesting connection.  The LIF then listens 
on the socket for any requests from the GUI. The LIF component has a run method, which is executed 
during the life of the component.  The run method continuously calls the method mainParseLoop, which 
processes data received from the GUI connection.  Requests from the GUI processed by the mainParseLoop 
take the form of a keyword followed by associated data (when applicable). When a keyword has been 
detected the associated SAC component method is called.  The following keywords and associated data can 
be processed, the actions required and the SAC method used to complete the action. 

• User Details: the message header from the GUI contains the string “UserDetails”.  The next two tokens 
in the string are taken to be the distinguished name and the password for the VASP LDAP server.  If 
tokens are received as expected then call the Make Association method in the CPN_SAC as below: 

 
CPN_SAC.MakeAssociation (distinguished_name, password) 

 

• LDAP Details: the message header from the GUI contains the string “LDAPDetails”.  The next two 
tokens in the string are taken to be the distinguished name and the password for the VASP LDAP server.  
If tokens are received as expected then call the Make Association method in the CPN_SAC as below: 

 
CPN_SAC.MakeAssociation (distinguished_name, password); 

 

• Reserve Connection: the message header is “ReserveConnection”. This is followed by a Virtual Circuit 
definition. A new instance of the virtual circuit class is created and then its read method is used to read 
the values received from the GUI. Once the Virtual Circuit has been read successfully, the 
ReserveConnection method in the CPN_SAC is called as below. 

 
CPN_SAC.ReserveConnection (VC); 

Where VC is the created instance of the virtual circuit class. 
 

• Delete Connection: the message header is “deleteConnection”.  This is followed by a string token which 
is the connection identifier string for the connection to be deleted. The CPN_SAC method 
ReleaseConnection is called as below: 

 
CPN_SAC.ReleaseConnection (connection_id); 

 

• Modify Connection: the message header is “modifyConnection”. This is followed by three string tokens, 
the first is the connection identifier. The second is the new stop time of the connection and the final 
string is the new bandwidth of the connection. Once the tokens have been read the associated virtual 
circuit stored by the LIF is updated and the SAC method ModifyConnection is called as below: 

 
CPN_SAC.ModifyConnection (VC); 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

Page 72  © 1998 Trumpet Consortium 

Where VC is the updated virtual circuit class, found from the connection id. 
 

• Get Connections: the message header from the GUI is “getConnections”, call the GetConnections 
method in the LIF as below: 

 
CPN_SAC.MakeAssociation (distinguished_name, password) 

 

• Get Sites: the message header is “GetSites”. The SAC method GetSiteVector is called as below, to return 
a list of sites which is then sent to the connection GUI: 

 
Vector sites = CPN_SAC.GetSiteVector () 

 

• Add Site: the message header is “AddSite”. This is followed by a SiteData definition. A new instance of 
the SiteData class is created and then its read method is used to read the values received from the GUI. 
Once the SiteData has been read successfully, the addSite method in the CPN_SAC is called as below. 

 
CPN_SAC.addSite (site); 

Where site is the created instance of the SiteData class. 
 

• Delete Site: the message header is “DeleteSite”. This is followed by two string tokens which specify the 
name and the location of the site to be deleted. Once the name and location have been read successfully, 
the deleteSite method in the CPN_SAC is called as below. 

 
CPN_SAC.deleteSite (name, location); 

 

• Get Bandwidths: the message header is “getBandwidths”.This is followed by a string token which is the 
type of connection whose bandwidths are required, this can be one of “VOICE”, “VIDEO” or “DATA”. 
Once the connection type has been read the local LIF method getBandwidths is called as below:  

 
Message bw = getBandwidths (connection_type); 

 

5.2.2.2 Interface to the VASP 

The interface between the CPN and the VASP is made using the Voyager package.  The CPN_IBCM 
component performs all interfacing to the VASP. Refer to the VASP Customer Service section for a 
description of the supported interface. 

VASP to CPN Interface: 

In order for the VASP to return information to the CPN Server the CPN object requires a Voyager aware 
version of itself, the VCPN class.  An instance is constructed and started from the main() method in the CPN 
class.  This object is then referenced remotely by the VASP by means of the Voyager package. Two CPN 
methods are defined that the VASP can call, they are: 
 

  public void eventReport (String ConnectionID, boolean status); 
 public void eventReport (Entry details); 

Note: The first method should be considered obsolete and be replaced with calls to the second version of  
the method. 

When called these methods take the information passed and call the appropriate CPN_SAC method to 
complete the processing and pass to the required GUI user connections. 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

© 1998 Trumpet Consortium  Page 73 

5.3  VASP Customer Server 

5.3.1 Engineering Object Model 

VASP
Customer Server

CustomerServercommManagedObjectVAssociationServer VCustomerService

Customer VASPVPConnection

Consists of

CPN Server VASP
Control Server

Voyager and SSL RMI

 

Figure 36: Engineering Object Model of the VASP Customer Server 

?  VAssociationServer: is the local interface for a CPN to start an association with the VASP. It provides a 
method to create new objects to provide services. 

?  VCustomerService: is the interface for the CPN to provide services to a Customer. It allows the 
management of the Customer and VASPVPConnnections objects.  

?  ManagedObject: is the base class of the objects to be managed by the CPN. The major function of 
ManagedObject class is to interface the LDAP Directory Server, by providing facilities to 
build/modify/release the entries. 

?  Customer: this object contains information about the customer as the name, the id and password. This 
object derives from the ManagedObject class and keeps its image in the LDAP Directory Server up to 
date. 

?  VASPVPConnection: this object contains information about a connection as termination points, 
bandwidth and schedule. It provides methods for its creation/modification/release, and performs the 
suitable requests to the VASP Control Server. This object derives from the ManagedObject class and 
keeps its image in the LDAP Directory Server up to date. 

?  CustomerServercomm: is the interface for the VASP Control Server to report events or request’s result 
from the PNOs. 

5.3.2 Supported Interfaces 

5.3.2.1 Interface to the CustomerServer as seen by the CPN. 

The interface between the CPN and the Customer Server is made through the Voyager ORB. 

There are two steps for a CPN to interface with the CustomerServer. Firstly the CPN register a virtual VASP 
object (VAssociationServer), calls an association method to obtain a reference to another virtual VASP 
object (VCustomerService). Secondly the VcustomerService (dedicated to this CPN) provides methods to 
communicate with the VASP. 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

Page 74  © 1998 Trumpet Consortium 

Each call to the following methods sends an Event to the CMA event manager with explicit information.   

 

5.3.2.1.1 VAssociationServer methods. 

METHOD  

VAssociationServer.Associate 

SYNOPSIS  
public synchronised VCustomerService associate (  
                            String DistinguishedName, 
      String password, 
      String address) 
DESCRIPTION 

This method first creates a new connection to the LDAP MIB with the passed DistinguishedName and 
Password. Then a new VCustomerService object is created to provide management services to the CPN. If 
successful, this object is returned. Otherwise the exception is thrown to the CPN.  

 

5.3.2.1.2 VCustomerService methods. 

METHOD  
VcustomerService.get 

SYNOPSIS  
public void create( String Stype, 
   Entry Eentry) 

DESCRIPTION 

Creates a new object of Stype class with the attributes set in Eentry. This implicitly references the new 
object in the LDAP MIB. The implemented classes are “Customer” and “VASPVPConnection”. 

In case of a “VASPVPConnection” creation, a request to the ControlServer is performed to reserve a new 
connection with the passed characteristics. And an event is send to the CMA event manager to inform the 
request of reservation. 

If unsuccessful an exception is thrown to the CPN. 

 

METHOD  
VcustomerService.get 

SYNOPSIS  
public EntrySet get( String BaseDN, 
   int scope, 
   String filter, 
   String[] SAattrs) 

DESCRIPTION 

Performs a search in the LDAP MIB tree, with the passed parameters:  

- the base DN which determines the subtree to apply the search to, 

- the kind of scope to perform, 

- the filter to select the entries. 

Returns to the CPN a set of entries which match with the passed arguments. Each entry contains only the 
selected attributes specified in SAattrs. 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

© 1998 Trumpet Consortium  Page 75 

If unsuccessful an exception is thrown to the CPN. 
  

METHOD  
VcustomerService.modify 

SYNOPSIS  
public Entry modify(String BaseDN, String conId, AttributeList attList) 
                                   throws CMISException, LDAPException 

DESCRIPTION 

Performs a search in the LDAP MIB subtree determined by the BaseDN, to find the VASPVPconnection 
identified by conID. Then replaces the attributes of the connection according to the passed attribute list, 
and requests to the ControlServer the modification of the connection. 

An event is send to the CMA event manager to inform the request of modification. 

If successful the modified entry is returned. 

If unsuccessful an exception is thrown to the CPN. 
  

METHOD  
VcustomerService.delete 

SYNOPSIS  
public void delete(String BaseDN, String conId) throws CMISException 

DESCRIPTION 

Performs a search in the LDAP MIB subtree determined by the BaseDN, to find the VASPVPconnection 
identified by conID. Then requests to the ControlServer the release this connection.  

An event is send to the CMA event manager to inform the request of release. 

If unsuccessful an exception is thrown to the CPN. 
  

5.3.2.2 Interface to the CPN as seen from the CustomerServer. 

The interface between the CPN and the Customer Server is made through the Voyager ORB. 

To interface with the CPN the CustomerServer registers a virtual CPN object (VCPN), which provides two 
methods to communicate. 

METHOD  
VCPN.eventReport 

SYNOPSIS  
public void eventReport(Entry details) 

DESCRIPTION 

Sends to the CPN an Entry that contains an image of the current state of an object. 

 

METHOD  
VCPN.eventReport 

SYNOPSIS  
public void eventReport(String ConnectionID, boolean status) 

DESCRIPTION 

Sends to the CPN the status of a connection. This function is not used any more. 

 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

Page 76  © 1998 Trumpet Consortium 

5.3.2.3 Interface to the ControlServer as seen by the CustomerServer. 

The interface between the CPN and the Customer Server is made using Java Remote Invocation Method 
(RMI). 

Three methods are offered by the Vasp Control Server: 

 

METHOD  
ControlServer.reserveConnection 

SYNOPSIS  
public void reserveConnection(String       VaspVPId, 
          String         srcCustId,  
     String         tgtCustId, 
     String       sourceAddr,  
     String       targetAddr, 
     VaspScheduleType schedule, 
     VaspQoSTypeOpt   qosParsOpt) 

DESCRIPTION 

Requests to reserve a connection between a peer entities with the specified parameters. 

 

METHOD  
ControlServer.modifyConnection 

SYNOPSIS  
public void modifyConnection(String    VaspVPId, 
           VaspScheduleTypeOpt  schedOpt, 
           VaspQoSTypeOpt   qosParsOpt) 

DESCRIPTION 

Requests to modify a reserved connection according to the passed parameters. 

 

METHOD  
ControlServer.releaseConnection 

SYNOPSIS  
public void releaseConnection(String VaspVPId) 

DESCRIPTION 

Requests to release a reserved connection. 

 

5.3.2.4 Interface to the CustomerServer as seen by the ControlServer. 

The interface between the CPN and the Customer Server is made using Java Remote Invocation Method 
(RMI). 

Seven methods are offered by the CustomerServer.  

Each call to the following methods sends an Event to the CMA event manager with explicit information.   

 

METHOD  
CustomerServercomm.allocateSegment 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

© 1998 Trumpet Consortium  Page 77 

SYNOPSIS  
public void AllocateSegment(String ConnectionID, String pnoID, 
        String pnoSegmentID, String accesspoint1, 
          String accesspoint2) 

DESCRIPTION 

Memorises the allocation of a segment of a connection. 

 

METHOD  
CustomerServercomm.allocateConnection 

SYNOPSIS  
public void allocateConnection(String ConnectionID, boolean status) 

DESCRIPTION 

Updates the status of the connection in the LDAP MIB, according to the result of the allocation. 

Informs the CPN of the connection new state.  

 

METHOD  
CustomerServercomm.activateConnection 

SYNOPSIS  
public void activateConnection(String VaspVPId, boolean status) 

DESCRIPTION 

Updates the status of the connection in the LDAP MIB, according to the result of the activation. 

Informs the CPN of the connection new state.  

 

METHOD  
CustomerServercomm.deactivateConnection 

SYNOPSIS  
public void deactivateConnection(String VaspVPId, boolean status) 

DESCRIPTION 

Updates the status of the connection in the LDAP MIB, according to the result of the deactivation. 

Informs the CPN of the connection new state.  

 

METHOD  
CustomerServercomm.modifyAccepted 

SYNOPSIS  
public void modifyAccepted(String   VaspVPId, boolean status) 

DESCRIPTION 

Updates the status of the connection in the LDAP MIB, according to the result of the modification. 

Informs the CPN of the connection new state.  
 

METHOD  
CustomerServercomm.releaseNotify 

SYNOPSIS   
public void releaseNotify(String   VaspVPId) 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

Page 78  © 1998 Trumpet Consortium 

DESCRIPTION 

Updates the status of the connection in the LDAP MIB. 

Informs the CPN of the connection new state.  

Remove the connection Entry from the LDAP MIB. 

 

METHOD  
CustomerServercomm.notify 

SYNOPSIS  
public void notify(String VaspVPId, VaspReasonType    reason) 

DESCRIPTION 

Receives the notification. 

 

5.3.3 Version, Release history 

Version 3: Septembre 98. 

This release support SSL, but not Access Control.  

 

5.4 VASP Control Server 

5.4.1 Engineering Object Model 

The controlServer’s class hierarchy is rather flat. The only hierarchy that exists, depicted below, has to do 
with Managed Objects (MO). 

 

 m a n a g e d O b j

 v a s p V P C o n n e c t i o n

   v a s p V P S e g m e n t

     c u s t E n d P o i n t

 

Figure 37: Engineering Object Model of the VASP Control Server 

The controlServer keeps a local copy of the connection MIB for its own use. The objects that comprise the 
MIB are instances of the three leaf classes above. The class managedObj is an abstract class containing all 
the operations pertaining to  the containment tree representing the MIB. For examp le, by inheriting from 
managedObj, all MIB objects are able to insert themselves into or remove themselves from the containment 
tree.  

The class VaspVpnManager is the core of the controlServer and is instantiated only once. This only  
instance is responsible for communicating with the customerServer on the one side, and the 
PnoConnectionManager on the other. It receives customer requests from customerServer and further 
negotiates with and forwards the requests to the relevant PNOs, and vice versa, receives notifications from 
the PNOs and if necessary forwards them to the customerServer. As a result of the different incoming 
requests and notifications the MIB (containment tree) is updated. 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

© 1998 Trumpet Consortium  Page 79 

The class ControlServer acts like a proxy of the vaspVpnManager with respect to the customerServer and 
likewise has only one instance. In other words, it is the ControlServer that really receives the requests from 
the customerServer. After converting some of the parameters from VASP-domain types to PNO-domain 
types, It forwards the requests to the vaspVpnManager.  

The rest of the classes are only support the functionality of the controlServer such as, reading the route 
table or keeping a list of PNOs with active connections to the controlServer.  

5.4.2 Supported Component Interfaces 

The VASP controlServer module interfaces on one side with the VASP customerServer module and on the 
other side with the PnoConnectionManager object. This latter is an OrbixWEB proxy object representing the 
Xuser-Agent.  

5.4.2.1 ControlServer as seen by the CustomerServer 

This defines the methods offered by the controlServer to the customerServer and is used to relay customer 
requests to the controlServer. 

 
interface VPNService  
{ 
public void reserveConnection( String VaspVPId, 
         String sourceCustId, 
         String targetCustId, 
         String sourceAddr, 
         String targetAddr, 
         VaspScheduleType schedule,  
         VaspQoSTypeOpt qosParsOpt ) 
throws RemoteException, vaspException; 
 
public void modifyConnection( String VaspVPId, 
         VaspScheduleTypeOpt  schedOpt,  
        VaspQoSTypeOpt   qosParsOpt) 
throws RemoteException, vaspException; 
 
public void releaseConnection( String VaspVPId ) 
throws RemoteException, vaspException; 
} 

 

5.4.2.2 ControlServer as seen by the PnoConnectionManager 

This defines the notifications that the ControlServer can receive from the PnoConnectionManager.  

 
interface VPConnectionServiceEventHandlerOperations  
{ 
public void  
activateConnectionNotify( XuserTypes.NameType pnoId, 
        XuserTypes.NameType vpConnectionId, 
        int status ) 
throws  IE.Iona.Orbixe.CORBA.SystemException; 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

Page 80  © 1998 Trumpet Consortium 

 
public void  
deactivateConnectionNotify( XuserTypes.NameType pnoId, 
          XuserTypes.NameType vpConnectionId, 
          int status ) 
throws  IE.Iona.Orbixe.CORBA.SystemException; 
 
public void  
releaseConnectionNotify( XuserTypes.NameType pnoId, 
       XuserTypes.NameType vpConnectionId, 
       XuserTypes.ReleaseReasonType reason )   
throws  IE.Iona.Orbixe.CORBA.SystemException; 
  
public void  
connectionNotify( XuserTypes.NameType pnoId, 
     XuserTypes.ReasonType reason, 
     String eventInformation )  
throws  IE.Iona.Orbixe.CORBA.SystemException; 

} 

 

5.4.3 Version, Release history 

Version 3: August 1998. 

 

5.5 VASP CORBA/TMN Gateway 

5.5.1 Engineering Object Model 

The VASP CORBA/TMN Gateway has been introduced throughout the implementation design to provide 
the glue between the JAVA -based VASP management system and the TMN management solution provided 
for the PNO domain. Its primary purpose is to map between the TMN Xuser interface to an JAVA -based API 
which can be integrated with the VASP Control Server.  

The gateway provides a set of adapter objects which exhibit a subset of the TMN Xuser interface. The 
interfaces of the adapter objects are defined using the interface definition language (IDL) which is part the 
CORBA specification [OMG CORBA]. At the programming level the IDL interfaces are mapped to suitable 
programming constructs (i.e. an JAVA API) according to language bindings. The implementation design of 
the gateway as shown in Figure 38 represents a refinement of the computational design for the PNO Service 
Layer Management which has been described in D8, Section 8.1.2 [TRUMPET-D8].  

The object CORBA/TMN Gateway Server presents the initial object of the gateway which registers the 
gateway application with the communications infrastructure. Moreover, it creates two factory objects which 
are provided to the VASP Control Server to create and delete instances of the service objects. The gateway 
provides two kinds of service objects called VPConnectionService and VPSubscriptionService which 
represent the core interface to the PNO Service Management. These objects provide the required 
functionality to manage VP connections and to maintain customer access points. Additionally, the 
VPConnectionServiceEventHandler provides means to forward event reports of the PNO Service 
Management to the VASP Control Server. This object is part of the VASP Control Server and provides 
functions which may be invoked by the gateway to indicate event reports as described in D8, section 8.1.2. 

The core implementation of the service objects VPConnectionService and VPSubscriptionService is 
provided by the XuserMgrRequestHandler which maps the operations of the service objects down to CMIP 
requests using the XMP/XOM API of HP OpenView DM. The request handler also serves as a co-ordinator 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

© 1998 Trumpet Consortium  Page 81 

for the CORBA and HP-OV communication channels. It realises an event loop which is waiting for 
indications of CORBA IIOP or CMIP protocol requests. 

VASP CORBA/TMN GatewayVASP Control Server PNO Xuser Agent

CORBA/TMN GatewayServer

<<Skeleton>>
VPSubscriptionServiceFactory

<<Implementation>>
VPSubscriptionServiceFactory

<<Skeleton>>
VPConnectionServiceFactory

<<Implementation>>
VPConnectionServiceFactory

creates creates

<<Skeleton>>
VPSubscriptionService

<<Implementation>>
VPSubscriptionService

<<Skeleton>>
VPConnectionService

<<Implementation>>
VPConnectionService

creates creates

<<Proxy>>
VPConnectionServiceEventHandler

creates

calls

calls

calls

Xuser-Mgr Request Handler

calls
calls

 

Figure 38: Engineering Object Model of the VASP CORBA/TMN Gateway 

 

5.5.2 Supported component interfaces 

Figure 39 presents an overview on the interfaces supported by the VASP CORBA/TMN gateway. All the 
supported interfaces are provided to the VASP Control Server which utilises the VP connectivity services of 
the PNO Service Layer Management. For the notification on event reports received from the PNO Service 
Layer Management a VPConnServiceEventHandler interface is required which is provided by the VASP 
Control Server. Moreover, the VASP CORBA/TMN gateway makes use of the Xuser interface which is 
provided by the PNO Xuser Agent.  

VASP CORBA/TMN Gateway

PNO Xuser AgentVASP Control Server

VPConnServiceEventHandler

VPConnectionService VPSubscriptionService

TMN Xuser

VPConnectionServiceFactory VPSubscriptionServiceFactory

Required interface

Supported interface

 

Figure 39: Required and supported interfaces of the VASP CORBA/TMN Gateway 

The remainder of this section only describes the details of the supported interfaces  



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

Page 82  © 1998 Trumpet Consortium 

5.5.2.1 VP Connection Service Factory 

FUNCTION 
PnoConnectionMgr::VPConnectionServiceFactory::create() 

SYNOPSIS  
VPConnectionService create( 
 in XuserTypes::NameType pnoId, 
 in VpnManager::VPConnectionServiceEventHandler eventHandler); 

DESCRIPTION  

Creates a new service object of type VPConnectionService for the interaction with the Service Layer 
Management System of the PNO identified by pnoId . The new service object is associated with an event 
handler which is referenced by the eventHandler parameter. 

ARGUMENTS 

• pnoId : Identifies the PNO Service Layer Management System. The identifier may be either a presentation 
string containing the global distinguished name of the PNO MAE or a number which can be mapped to 
the distinguished name according to an mapping table of the CORBA/TMN gateway. 

• eventHandler: Contains an object reference to an event handler object VPConnectionServiceEvent-
Handler which is associated with the new service object. The event handler is triggered by the service 
object if an event report from the PNO Service Layer Management System is indicated. 

RESULTS 

Returns an object reference to the new service object on success. If the service object cannot be created a 
nil object reference is returned. 

BUGS 

An exception type should be defined to indicate possible failures (i.e., PNO not found, communication 
failure, etc.) 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

© 1998 Trumpet Consortium  Page 83 

FUNCTION 
PnoConnectionMgr::VPConnectionServiceFactory::delete() 

SYNOPSIS  
void delete( 
 in VPConnectionService vpConnectionServiceRef); 

DESCRIPTION  

Deletes the service object of type VPConnectionService identified by the object reference given in 
vpConnectionServiceRef. After successful deletion of the service object the event handler object which had 
been be associated with service object will not be triggered anymore to indicate event reports. 

ARGUMENTS 

• vpConnectionServiceRef: Contains an object reference to an service object of type vpConnection-
ServiceRef. 

RESULTS 

∅. 

BUGS 

An exception type should be defined to indicate possible failures of this operation (i.e., object not found). 

5.5.2.2 VP Connection Service 

FUNCTION 
PnoConnectionMgr::VPConnectionService::reserveConnection() 

SYNOPSIS  
XuserTypes::ReserveConnectionResultType reserveConnection( 
 in XuserTypes::ReserveConnectionInfoType connectionInformation) 
  raises (ConnectionRequestFailure); 

DESCRIPTION  

Reserves a new VP connection at the associated PNO according to the details given by the parameter 
connectionInformation. 

ARGUMENTS 

The parameter connectionInfo , contains the following components: 

• userId: Identifies the user of the connectivity service offered by the PNO. According to the 
TRUMPET scenario this parameter identifies the VASP. 

• sourceE164AddressOpt: May contain the E164 source address of the customer access point. 

• destinationE164Address: Contains the E164 destination address of the customer access point. 

• connectionProtectionLevelOpt: May contain the protection level for the VP connection. Possible 
values (if not omitted) are protected, unprotected-lowpriority, unprotected-highpriority. 

• routingCriteriaOpt: May contain customised settings for the routing algorithm implemented as part 
of the PNO’s connectivity service. Currently no options have been defined for the routing algorithm 
used by the TRUMPET PNO Service Layer Management System. 

• directionality: Identifies the directionality of the requested VP connection. The value may be either 
unidirectional or bidirectional. 

• schedule: Defines the schedule for the requested VP connection. 

• qosParametersOpt: May contain a set of QOS parameters for the requested VP connection. 

RESULTS 

Returns an object type ReserveConnectionResultType on successful operation. This object contains the 
connection id for the schedule connection and may additional contain the select source customer access 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

Page 84  © 1998 Trumpet Consortium 

point. If the operation fails an exception of type ConnectionRequestFailure is raised which contains an 
object of type ReasonType. In the current implementation of the CORBA/TMN gateway this object will 
contain an error number. 

BUGS 

Instead of a general ConnectionRequestFailure exception which provides an error number, there should be 
rather several exception types defined for different types of errors which may occur. 

SEE ALSO 
PnoConnectionMgr::VPConnectionServiceFactory 

 

FUNCTION 
PnoConnectionMgr::VPConnectionService::modifyConnection() 

SYNOPSIS  
void modifyConnection( 
 in XuserTypes::ModifyConnectionInfoType connectionInformation) 
  raises (ConnectionRequestFailure); 

DESCRIPTION  

Modifies the characteristics of an pending or scheduled VP connection at the associated PNO as identified 
by the parameter connectionInformation. Modifications of both the schedule and the set of QoS parameters 
are possible. 

ARGUMENTS 

The parameter connectionInfo , contains the following components: 

• userId: Identifies the user of the connectivity service offered by the PNO. According to the 
TRUMPET scenario this parameter identifies the VASP. 

• connectionId : Identifies the VP Connection to be modified. 

• scheduleOpt: may contain a new schedule for the given VP connection. 

• qosParametersOpt: May contain a set of QOS parameters for the given VP connection. 

RESULTS 

Nothing is returned on successful operation. If the operation fails an exception of type ConnectionRequest-
Failure is raised which contains an object of type ReasonType. In the current implementation of the 
CORBA/TMN gateway this object will contain an error number. 

BUGS 

Instead of a general ConnectionRequestFailure exception which provides an error number, there should be 
rather several exception types defined for different types of errors which may occur. 

SEE ALSO 
PnoConnectionMgr::VPConnectionServiceFactory 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

© 1998 Trumpet Consortium  Page 85 

FUNCTION 
PnoConnectionMgr::VPConnectionService::releaseConnection() 

SYNOPSIS  
void releaseConnection( 
 in XuserTypes::ReleaseConnectionInfoType connectionInformation) 
  raises (ConnectionRequestFailure); 

DESCRIPTION  

Releases an pending or scheduled VP connection at the associated PNO as identified by the parameter 
connectionInformation. 

ARGUMENTS 

The parameter connectionInfo , contains the following components: 

• userId: Identifies the user of the connectivity service offered by the PNO. According to the 
TRUMPET scenario this parameter identifies the VASP. 

• connectionId : Identifies the VP Connection to be released.. 

RESULTS 

Nothing is returned on successful operation. If the operation fails an exception of type ConnectionRequest-
Failure is raised which contains an object of type ReasonType. In the current implementation of the 
CORBA/TMN gateway this object will contain an error number. 

BUGS 

Instead of a general ConnectionRequestFailure exception which provides an error number, there should be 
rather several exception types defined for different types of errors which may occur. 

SEE ALSO 
PnoConnectionMgr::VPConnectionServiceFactory 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

Page 86  © 1998 Trumpet Consortium 

5.5.2.3 VP Subscription Service Factory 

FUNCTION 
PnoConnectionMgr::VPSubscriptionServiceFactory::create() 

SYNOPSIS  
VPSubscriptionService create(in XuserTypes::NameType pnoId); 

DESCRIPTION  

Creates a new service object of type VPSubscriptionService for the interaction with the Service Layer 
Management System of the PNO identified by pnoId . 

ARGUMENTS 

• pnoId : Identifies the PNO Service Layer Management System. The identifier may be either a presentation 
string containing the global distinguished name of the PNO MAE or a number which can be mapped to 
the distinguished name according to an mapping table of the CORBA/TMN gateway. 

RESULTS 

Returns an object reference to the new service object of type VPSubscriptionService on success. If the 
service object cannot be created a nil object reference is returned. 

BUGS 

An exception type should be defined to indicate possible failures (i.e., PNO not found, communication 
failure, etc.) 

 

FUNCTION 
PnoConnectionMgr::VPSubscriptionServiceFactory::delete() 

SYNOPSIS  
void delete(in VPSubscriptionService vpSubscriptionServiceRef); 

DESCRIPTION  

Deletes the service object of type VPSubscriptionService identified by the object reference given in 
vpSubscriptionServiceRef. After successful deletion of the service object the event handler object which 
used to be associated with service object will not be triggered anymore to indicate event reports. 

ARGUMENTS 

• vpSubscriptionServiceRef: Contains an object reference to an service object of type vpSubscription-
ServiceRef. 

RESULTS 

∅. 

BUGS 

An exception type should be defined to indicate possible failures of this operation (i.e., object not found). 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

© 1998 Trumpet Consortium  Page 87 

5.5.2.4 VP Subscription Service 

FUNCTION 
PnoConnectionMgr::VPSubscriptionService::createAccessPoint 

SYNOPSIS  
void createAccessPoint( 
 in XuserTypes::IdentifierType userId, 
 in XuserTypes::NameType accessPointId, 
 in XuserTypes::E164AddressType E164Address) 
  raises (InvalidAccessPoint); 

DESCRIPTION  

Registers a customer access point with PNO Service Layer Management System for the user identified by 
the parameter userId. Note, that in the TRUMPET scenario the user role is always taken by the VASP 
management system which may register access points on behalf of its customers. The new access point is 
identified by accessPointId  which serves as the value for the naming attribute of the created object instance 
within the PNO Service Layer Management System. The third parameter defines an globally unique number 
which is associated with the new access point.  

ARGUMENTS 

• userId: Identifies the user of the connectivity service offered by the PNO. According to the TRUMPET 
scenario this parameter identifies the VASP. 

• accessPointId : Serves as the value for the naming value of the object instance to be created within the 
PNO Service Layer Management System. For the given user the identifier provided has to be unique. 

• E164Address: Defines an globally unique number which is associated with the new access point. 

RESULTS 

Nothing is returned on successful operation. If the operation fails an exception of type InvalidAccessPoint 
is raised which indicates an invalid access point identifier or an invalid E164 address. 

BUGS 

Additional exception types should be defined to indicate the error conditions. 

SEE ALSO 
PnoConnectionMgr::VPSubscriptionServiceFactory 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

Page 88  © 1998 Trumpet Consortium 

FUNCTION 
PnoConnectionMgr::VPSubscriptionService::deleteAccessPoint 

SYNOPSIS  
void deleteAccessPoint( 
 in XuserTypes::IdentifierType userId, 
 in XuserTypes::NameType accessPointId) 
  raises (NotFound); 

DESCRIPTION  

Removes a customer access point from the PNO Service Layer Management System for the user identified 
by the parameter userId. Note, that in the TRUMPET scenario the user role is always taken by the VASP 
management system which may register access points on behalf of its customers. The access point to be 
deleted is identified by accessPointId . Note, that access points can only be deleted by its creator. 

ARGUMENTS 

• userId: Identifies the user of the connectivity service offered by the PNO. According to the TRUMPET 
scenario this parameter identifies the VASP. 

• accessPointId : Serves as the value for the naming value of the object instance to be deleted within the 
PNO Service Layer Management System. For the given user the identifier provided has to be unique. 

RESULTS 

Nothing is returned on successful operation. If the operation fails an exception of type InvalidAccessPoint 
is raised which indicates an invalid access point identifier. 

BUGS 

Additional exception types should be defined to indicate the error conditions. 

SEE ALSO 
PnoConnectionMgr::VPSubscriptionServiceFactory 

 

5.5.2.5 Event Reporting Service 

The interface to the event reporting service supported by the CORBA/TMN gateway is not accessible to 
external applications, but it is used internally by the gateway to report management events to the CMA 
messaging system (CMA-TMS). 

Report_event.h  

The Xuser manager calls the following functions just before issuing a management request to the Xuser 
agent. They are used in the action_req.cc file, which contains the code to build CMIP requests from the 
Xuser C constructs, and take as input argument the request information. 
 
void report_reserve_req (const SG_ReserveGBCConnectionInformation& 
info); 
void report_modify_req  (const SG_ModifyGBCConnectionInformation& info); 
void report_release_req (const SG_ReleaseGBCConnectionInformation& 
info); 

Similarly, the Xuser manager calls the following functions just after having received the result to a 
management request from the Xuser agent. They are used in the action_cnf.cc file, which contains the code 
to decode CMIP results into Xuser C constructs, and take as input argument the request result. 
 
void report_reserve_cnf (const SG_ReserveGBCConnectionResult& result); 
void report_modify_cnf  (const SG_ModifyGBCConnectionResult& result); 
void report_release_cnf (const SG_ReleaseGBCConnectionResult& result); 

XuserVaspMgmtServiceReporter.h  



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

© 1998 Trumpet Consortium  Page 89 

The functions of the report_event.h interface use the instance of the singleton class 
XuserVaspMgmtServiceReporter to emit the management event to report to the CMA messaging system 
over a TCP socket. This class emission is implemented in the public method 
int emitEvent( 
const RWCString& eventType, 
const RWCString& serviceReportCause, 
const RWCString& actionName, 
const RWCString& actionInfo); 
 
The XuserVaspMgmtServiceReporter object uses the following private data members to complete the 
event information: 
 
struct sockaddr_in  m_meAddress; 
RWCString   m_serviceId; 
RWCString   m_moc; 

These data members are initialized at launch time from the configuration file cma_tms.cfg: m_moc has a 
constant value that identifies the Xuser manager (“XuserVaspManagementService”, corresponding to a 
code value of “6”). 

5.5.3 Version, Release history 

Version 2, June 1998. 

 

5.6 PNO Xuser-Agent 

5.6.1 Engineering Object Model 

The PNO Xuser-Agent realises the PNO Service Layer Management System which provides the VP 
Connection Management Service. This service is utilised by the VASP Management System to manage a 
segment of an end-to-end virtual path between to customer access points of the public network domain.  

The implementation design of the Xuser-Agent is based on the computational model of the PNO Service 
Layer Management which has been described in D8, Section 8.1.2 [TRUMPET-D8]. The TMN Xuser-
interface provided the Xuser-Agent has been adopted from the MISA project according to the agreements 
between the TRUMPET and MISA projects. However, TRUMPET uses only a subset of the Xuser-interface, 
namely those functions for the connection management (MISA Path Provisioning Ensemble [MISA-D3-A1]) 
as well as some basic functions provided with the subscription management (MISA Subscription Ensemble 
[MISA-D3-A2]).  

The engineering object model of the PNO Xuser Agent is depicted in Figure 40. The object PNO Xuser 
Agent Co-ordinator constitutes the initial object of the Xuser-Agent which registers the application with 
the communications infrastructure. Subsequently, it creates the basic agent object, namely the MIT 
Manager and Agent Request Handler. The MIT Manager is responsible for the internal data management of 
the Management Information Base and it provides functions to invoke operations on the contained 
Managed Objects. The Agent Request Handler realises an event loop which awaits indications for CMIP 
operation requests. Besides that, the Agent Request Handler creates the Dispatcher object which maps 
CMIP requests to operations called on the Managed Object implemenation objects maintained by the MIT 
Manager.  



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

Page 90  © 1998 Trumpet Consortium 

Operations invoked on a Managed Object will change the state of the Management Information Bases and 
may also result in operation invocations on a managed resource. In particular this is the case for the 
operations provided by GBCServiceProvider which are mapped internally to corresponding operation 
invocations on the underlying PNO Network Layer Management System. The handling of the operations of 
the Network Layer Management System is provided by PNO Network Management. 

PNO Xuser-Agent SL-OSCORBA/TMN Gateway PNO NL-OS

calls

PNO Xuser Agent Co-ordinator

creates creates

<<MO Implementation>>
GBCMServiceProvider

Agent Request Handler

calls

MIT Manager

<<MO Implementation>>
GBCMUser

<<MO Implementation>>
GBCMAccessPoint

<<MO Implementation>>
GBCMUser-Serv.Profile

<<MO Implementation>>
GBCMTroubleReport

Dispatcher

Network Manager

creates

calls

calls

calls

 

Figure 40: Engineering Object Model of the PNO Xuser-Agent 

5.6.2 Supported component interfaces 

The external interface provided by the Xuser-Agent corresponds to the Xuser-specification which has been 
developed by the MISA project [MISA-D3A1]. It is therefore not described here in detail. The latest release 
of the MISA Xuser specification which has been used as a basis for the implementation of the PNO Xuser-
Agent can be found in Section XXX. In the remainder of this section only the basic operations provided for 
the connection management are described. 

5.6.2.1 GBCServiceProvider 

ACTION TYPE 
reserveGBCConnection 

BASE OBJECT CLASS 
GBCMServiceProvider 

BASE OBJECT INSTANCE 
GBCMServiceProvider instance 

DESCRIPTION  

This action is performed by the GBCM User which requests a GBC connection reservation from the GBCM 
Service Provider. The result of this action is the acceptance or reject of the connection reservation request 
(regarding the start time, the stop time and eventually the periodicity requested). If the connection 
reservation is rejected, the reason is returned (not available resources, not possible in the interval time,...). If 
the connection reservation is accepted, a gBCConnection object instance is created. 

ACTION INFORMATION 

The information type reserveGBCConnectionInformation, contains the following components: 

• gBCMUserId: Identifies the user of the connectivity service offered by the PNO.  

• sourceE164Address: May contain the E164 source address of the customer access point. 

• destinationE164Address: Contains the E164 destination address of the customer access point. 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

© 1998 Trumpet Consortium  Page 91 

• connectionProtectionLevel: May contain the protection level for the VP connection. Possible values 
(if not omitted) are protected, unprotected-lowpriority, unprotected-highpriority. 

• routingCriteria: May contain customised settings for the routing algorithm implemented as part of 
the PNO’s connectivity service. Currently no options have been defined for the routing algorithm 
used by the TRUMPET PNO Service Layer Management System. 

• gBCType: Identifies the type of connectivity service to be used. The current Xuser-specification 
defines the ATM and SDH Path Provisioning Service (APPS, SPPS). 

• gBCDirectionality: Identifies the directionality of the requested VP connection. The value may be 
either unidirectional or bi-directional. 

• gBCSchedule: Defines the schedule for the requested VP connection. 

• gBCPPSparameters: May contain a set of QOS parameters for the requested VP connection. 

ACTION RESULT 

On successful operation the action results of type modifyGBCConnectionResult contains the connection id 
for the schedule connection and may additional contain the select source customer access point. If the 
operation fails the result contains an error number. 

 

 

ACTION TYPE 
modifyGBCConnection 

BASE OBJECT CLASS 
GBCMServiceProvider 

BASE OBJECT INSTANCE 
GBCMServiceProvider instance 

DESCRIPTION  

This action is performed by the GBCM User requesting the modification of the GBC connection. In case of 
SPPS (SDH), it is possible that modification is not supported. In this case the action request will be 
rejected." 

ACTION INFORMATION 

The information type modifyGBCConnectionInformation, contains the following components: 

• gBCMUserId: Identifies the user of the connectivity service offered by the PNO. 

• gBCConnectionId : Identifies the VP Connection to be modified. 

• gBCSchedule: May contain a new schedule for the given VP connection. 

• gBCPPSparameters: May contain a set of QOS parameters for the given VP connection. 

ACTION RESULT 

On successful operation the action results of type modifyGBCConnectionResult contains nothing. If the 
operation fails the result contains an error number. 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

Page 92  © 1998 Trumpet Consortium 

ACTION TYPE 
releaseGBCConnection 

BASE OBJECT CLASS 
GBCMServiceProvider 

BASE OBJECT INSTANCE 
GBCMServiceProvider instance 

DESCRIPTION  

This action is performed by the GBCM User requesting the clearing down of the GBC Connection. This will 
delete the gBCConnection object instance. 

ACTION INFORMATION 

The information type releaseGBCConnectionInformation, contains the following components: 

• gBCMUserId: Identifies the user of the connectivity service offered by the PNO. 

• gBCConnectionId : Identifies the VP Connection to be released. 

ACTION RESULT 

On successful operation the action results of type releaseGBCConnectionResult contains nothing. If the 
operation fails the result contains an error number. 

 

5.6.3 Version, Release history, Known bugs 

5.6.3.1 Version / release history 

Version 2.2b: July 16th 1998 - Final version compiled for the Scottish Trial which some problems with the M4 
gateway interface. This version complies to the current MISA Xuser specification version 2.5 

5.6.3.2 Known bugs 

Sometimes, the Xuser scheduler tries to trigger activate/deactivate messages for connections which no 
longer exist. This results in Xuser-Agent console error message indicating that the respective connection id 
have not been found. However, this bug doe not degrade the operation of the Xuser-Agent. 

 

5.7 PNO CMA-Based NMS 

5.7.1 Engineering Object Model 

The figure below represents the architecture of the PNO Xuser agent with the integration of CMA-based 
components: 

• The MOSE (Managed Object Server Entity) maintains an object model, which acts as a “bridge” 
between the Xuser MIB and the Fore MIB. 

• The AE (Application Entity) implements the functions of the snmp-ifc.h interface in terms of CMA 
functionality: create/delete MOSE objects, set attributes. 

• The ME (Mediation Entity) handles the translation of MOSE operations into SNMP requests to the 
Fore switch. 

 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

© 1998 Trumpet Consortium  Page 93 

CPN VASP

SNMP Agent
FORE MIB

FORE switch

Xuser MIB
Xuser Agent

PNO

PNO TMN

AE

Interface
Snmp-ifc.h

MOSE

ME

C
M
A

N
M
S

M
M

MM
M

M

 

Figure 41: PNO Domain Architecture with CMA Components 

 

Figure 41 shows four levels of inter-process communications. When the Xuser Agent calls one operation 
(reserve, activate, deactivate or release connection) the AE create an AE_Xuser_Adapter instance and 
passes the parameters to a Connection Manager instance which provides management of connections. The 
Connection Manager instance firstly sent call Subscribe/unSubscribe to the CMA MOSE, then performs set 
operations on the MOSE object model. The CMA MOSE Events Handler captures the calls from AE and 
pass commands to the MOSE View instance. Now MIT Manager of the View instance create/delete managed 
object according to Subscribe/unSubscribe calls. When Subscribe operation on new managed object is 
successfully completed and MO included into MIT this one can accept get/set operation from the View 
instance. According to scope parameter of the get/set operation changing of value of the attribute performs 
at MOSE or at ME level. If set/get operation is destined to the ME level than this operation is transmitted by 
Mediation instance to the Agent Manager of ME. The Agent Manager performs set/get operation directly 
to the SNMP Agent and write/read the value in physical level, that is on managed Network Element (NE).  

 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

Page 94  © 1998 Trumpet Consortium 

Top
CCITT Rec. X.721 (1992) | ISO/IEC 10165-2 

System
CCITT Rec. X.721 (1992) |

ISO/IEC 10165-2  

connectivity
I-ETS 300 653 : 1996 

networkTP
I-ETS 300 653  : 1996 

gBCServiceProvider
Xuser MIB 

gBCConnection
Xuser MIB 

gBCAccessPoint
Xuser MIB 

gBCMUser
Xuser MIB 

gBCATMEquipment
Additional MO 

 

Figure 42: Inheritance Tree of the MOSE Information Model 

 

The information model implemented by the MOSE is a subset of the Xuser MIB, except for the new 
gBCATMEquipment object class, which was added for practical purposes of CMA NMS, represents GBC 
ATM equipment of a PNO. A PNO can use more than one ATM switch to establish a gBCConnection. The 
object class gBCATMEquipment permits to extend Xuser specification to cover ATM equipment 
management requirements. 

 

Top
CCITT Rec. X.721 (1992) | ISO/IEC 10165-2  

System
CCITT Rec. X.721 (1992) |

ISO/IEC 10165-2 

gBCServiceProvider
Xuser MIB 

gBCConnection
Xuser MIB 

gBCMUser
Xuser MIB 

gBCATMEquipment
Additional MO

 

Figure 43: Containment Tree of the MOSE Information Model 

 

The definition of the object model for CMA NMS is founded on analysis of both MIB: Xuser and FORE and 
on engineering of relationships, comportment and states of the chosen object classes. 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

© 1998 Trumpet Consortium  Page 95 

The object class System owns an entity of the Global Service Provider, which represents an abstract Service 
Provider. The Global Service Provider can own other Service Providers and each Service Provider owns a set 
of end-users. An end-user owns a set of equipment that he uses to establish an end-to-end connection. 
And finally, the gBCATMEquipment owns a set of GBC connection, which represents a locally established 
connection between two ATM switches of the same PNO or an interconnection between two PNO domains. 

5.7.2 Supported component interfaces 

The interface supported by the CMA-NMS defines the management functionality of the FORE switch, used 
by the Xuser agent. The following functions are implemented (taken from the interface file snmp-ifc.h). 

All functions return an int, which is the status of table entry. The return values are: 
2 - for creation (reservation) successful 
1 - for validation (activation) successful 
4 - for invalidation (deactivation) successful 
-1 - for operation failed 

 
int reservePath( CommunityName communityName,   
   IPAddress agentIPAdd,  
   Port inputPort,  
    Port outputPort,  
   enum Directionality directionality, 
   struct TrafficDescriptor trafficDescript, 
   enum QosClass qosClass, 
   enum Reason reason, 
   Vpi* inputVPI,  
   Vpi* outputVPI 
   ); 
 
int activatePath( CommunityName communityName,   
    IPAddress agentIPAdd,  
    Port inputPort,  
    Port outputPort, 
    enum Directionality directionality,  
    enum Reason reason, 
    Vpi inputVPI,  
    Vpi outputVPI 
    ); 
 
int deActivatePath( CommunityName communityName,   
      IPAddress agentIPAdd,  
      Port inputPort,  
      Port outputPort, 
      enum Directionality directionality,  
      enum Reason reason, 
      Vpi inputVPI,  
      Vpi outputVPI 
      ); 
 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

Page 96  © 1998 Trumpet Consortium 

int releasePath( CommunityName communityName,   
          IPAddress agentIPAdd,  
          Port inputPort,  
          Port outputPort, 
          enum Directionality directionality,  
          enum Reason reason, 
          Vpi inputVPI, 
          Vpi outputVPI  
          ); 

 

5.7.3 Version, Release history 

CMA-NMS 1.0 (unique version for the Sophia demo), September 1998. 

5.8 PNO Messaging System Adapter 

5.8.1 Engineering Object Model 

The PNO messaging system is part of the Trumpet messaging system which is shown in the following 
figure. The Trumpet messaging system is an architecture designed and implemented in order to capture and 
display security and management events happened inside the system during operation. Events can be 
security events coming from the Trumpet security package as well as management events.. Events can be 
generated in all three domains i.e. CPN/VASP/PNO. 

• CPN domain. Events may be generated by the CPN Server. 

• VASP domain. Events are generated by the Customer Server (management events) and by the Xuser 
Manager (both kind of events, security events through the SMASC). 

• PNO domain. The Xuser Agent can generate events of both types, security events through the 
SMASC. 

At the VASP level, management events generated in the CPN domain are sent to the Mediation Entity (ME) 
of the CMA system. In addition CMA receives management events form the Xuser Manager. The instance 
of the SELF that runs at the VASP level receives only security events from the SMASC. The instance of the 
SELF that runs at the PNO level receives both security and management events coming from the SMASC 
and Xuser Agent respectively. Shaded boxes in the following figure represent programs built from the CMA 
Framework. 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

© 1998 Trumpet Consortium  Page 97 

AA
Server

CORBA

AA Client
Events GUI

CORBA

RMI

CMIP

   Xuser
Manager

Socket

CORBA

 PNO

 SMP

Mediation
Management
Events GUI

CPN
Server

(Security
events)

(Management
events)

CORBA / TMN
Gateway

Voyager (ORB)Socket

SELF
RMI CMIP

Control Server

Customer Server
VASP

CPN

NMS
(M4 / CMA)

SNMP

Xuser
Agent

 SMP

ATM (FORE)

CPN
GUI

 

Figure 44: Trumpet Messaging System 

Identification of Services 

In order to better clarify a security or management event security and management service classes have 
been implemented. So we have five security service classes and four management service classes. 

Security service classes 
• Authentication service, 

• Access Control service 

• Key Management service 

• Integrity/Confidentiality service 

Management service classes 
• CPN Management service 

• Customer Server service 

• Xuser VASP service 

• Xuser PNO service 

5.8.2 Supported component interfaces 

There are two interfaces at the PNO level. The first one in between the Audit and Alarm Agent (AA  Agent) 
and the Xuser/SMASC and the second one between the AA Agent and the Audit and Alarm Manager (AA 
Manager). The first one is realised using UNIX TCP/IP sockets and the second interface is realised using 
the CMIP protocol. 

 The Xuser agent communication defines the relevant trace points for TRUMPET. That means protocol 
exchanges during association establishment and release and the management operation primitives The 
relevant trace points are: 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

Page 98  © 1998 Trumpet Consortium 

• start and stop of the agent 

• Association requests and replies  

• Association release requests and replies 

• Incoming management operation indications (create/modify/delete) 

• Outgoing management operation results & errors 

Through SMASC the security events are sent to the Audit and Alarm agent. Both, Xuser agent and SMASC 
use the audit and alarm library, a library designed in order to accommodate management and security events 
before these are sent to the audit agent. 

The basic function in this library is the send_info function which has the following parameters:  
void send_info( 
 enum Service_Type service, 
 int service_id, 
 char *EType, 
 char *Suser, 
 char *Sprovider,  
 char *Info_msg 
); 

The service_id  parameter is used to identify the part of the system, a security or management event has 
been produced from.  For the PNO level we have two identifiers denoting the two instances of the Xuser 
agent at this level. 

Xuser Agent -> 4 

Xuser Agent (second instance) -> 5 

The EType parameter identifies the security events. The set of security events is left for discussion in 
section 6.8.2.  The Suser parameter is used to identify the DN of the entity that caused the event. The 
Sprovider denotes the target entity. The Info_msg field is used to convey information relevant to a security 
or management event. In case of a security event information about the security profile or credentials and 
generally any kind of information that help identify better the event. In case of a management event the 
Info_msg field accommodates the trace message relevant to the management operation. 

The interface between the AA Agent and the AA Manager is realised using the CMIP protocol and 
particularly the CMIS M-EVENT-REPORT. The parameters of this report is shown in the following table. 
More details of the contents of the report and how it applies to our implementation will be given in section 
6.8.2.  

 
Parameter name Req/Ind Rsp/Cnf 

Invoke identifier M M(=) 
Mode M - 
Managed object class M U 
Managed object instance M U 
Event type M M(=) 
Event time - U 
Event information U - 
Current time - U 
Event reply - C 
Errors - C 

Table 5: M-EVENT-REPORT parameters 

Mode: specifies the mode requested for the operation, either confirmed or non-confirmed. 

Managed object class: identifies the class of the object in which the event occurred. 

Managed object instance: identifies the object in which the event occurred. 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

© 1998 Trumpet Consortium  Page 99 

Event type: specifies the type of the event to be reported. 

Event time: time of the event generation 

Event information: the information provided by the service reporting the event, i.e. 

• Service report cause: the following causes are defined: 

• request for service (event generated because of a request for the provision of a service);  

• denial of service: a request for service has been denied; 

• response from service: a request for service has been satisfied; 

• service failure: an abnormal condition that caused the service to fail has been detected during the 
provision of a service; 

• service recovery: a service has recovered from an abnormal condition; 

• other reason: the actual cause is specified in the other parameters of the report. 

• Notification identifier: UNUSED 

• Correlated Notifications: UNUSED 

• Additional text: planned to be used by the audit trail analysers and either used by the security alarm 
application or the recovery management application; 

• Additional information: planned to be used by the audit trail analysers and either used by the security 
alarm application or the recovery management application. 

Current time:[appears in the response to the request] time at which the response was generated 

Event reply: [appears in the response to the request] the reply to the event report. 

Errors: [appears in the response to the request] error notification for the operation. 

 

5.8.3 Version, Release history 

The CMIP interface is built inside the HP-OV platform. The Audit and Alarm (AA) library latest release is 
version 3 , July 1998. 

 

5.9 VASP and PNO Management Event Reporting 

5.9.1 Engineering Object Model 

The CMA TRUMPET Messaging System (CMA-TMS) for management events supports two related kinds 
of operations: creation of EFDs in the ME, and graphical display of events in the GUI AE. 

5.9.1.1 Creation of EFDs 

Figure 45 shows the object model of the CMA-TMS concerned with the creation of EFDs. 

To create an EFD in the ME, a graphical panel is available for easy definition of the filters to be set. The 
corresponding command is sent via CORBA through the MOSE and reaches an EFD handler in the ME. This 
handler checks the validity of the filter and creates the new EFD object in the ME. 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

Page 100  © 1998 Trumpet Consortium 

CORBA

ME

MOSE

TMS_CustomerManagementService

TMS_XuserPnoManagementService

TMS_XuserVaspManagementService

TMS_CpnManagementService

TMS_ManagementService

TMS_View TMS_Client

Event Filter
Panels

AE

EFD Handler

CORBA

 

Figure 45 : Creation of EFDs in the CMA Based Messaging System 

 

5.9.1.2 Graphical Display of Events 

The processing of TRUMPET events by the CMA based system is pictured on Figure 46. At the ME level, 
an incoming event is processed in the following way: 

• A character string is received by socket from some process in the Trumpet system. This handled by a 
special “Socket Agent Manager”, which also parses the string to recognize its different fields 

• From the information in the string, an X.721 alarm object is created in the internal CMA representation. 
This is done by an “Event Handler” object. 

• The event handler object compares the alarm object to all the EFDs present in the ME and, for every 
match, it forwards the event through the MOSE to the interested applications. 

CORBA

Socket

ME

MOSE

TMS_CustomerManagementService

TMS_XuserPnoManagementService

TMS_XuserVaspManagementService

TMS_CpnManagementService

TMS_ManagementService

TMS_View TMS_Client

Socket Agent Manager

GUI
Event Panels

AE

Event Handler

CORBA

 

Figure 46 : CMA Processing of TRUMPET Management Events 

 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

© 1998 Trumpet Consortium  Page 101 

5.9.2 Supported component interfaces 

The role of the Messaging System is to display graphically event reports emitted by various servers in the 
TRUMPET management system. The interface offered by the CMA-TMS to the TRUMPET servers for 
event reporting is at the socket level, like the interface offered by the security AA (Audit and Alarm) 
application for the processing of events concerned with security aspects (see Section 6.7). 

This section presents the specifications of the events that the CMA-TMS can handle: TRUMPET programs 
that emit management events should follow them to format the information sent over the socket to the 
CMA-TMS so it can be processed correctly. 
 

Security and Management events in all the TRUMPET system share a common model to represent 
management entities and a common structure for the event information (see Section 6.7). In this model, all 
events contain the following information: 

• Managed Object Class (MOC) 

• Managed Object Instance (MOI) 

• Specific event information 

 

The MOC and MOI identify an object that may emit an event. Objects that generate events are seen as 
instances of some services, either security services or management services, as defined in the following list 
of MOCs: 

0 : AuthenticationService 
1 : KeyManagementService 
2 : IntegrityConfidentialityService 
3 : AccessControlService 
4 : CpnManagementService 
5 : CustomerManagementService 
6 : XuserVaspManagementService 
7 : XuserPnoManagementService 

The MOC of an object that generated an event is recognized by using an integer code in the event data. The 
MOI of the object is determined by using another integer code, the "serviceId". The serviceId is a number 
that uniquely identifies all the management entities in the current configuration of the TRUMPET system. 
The attribution of the serviceId is agreed as a convention by TRUMPET developers: 

1 : CPN server 
2 : Customer server 
3 : Xuser Manager 
4 : Xuser Agent 
5 : Xuser Agent 

New entries may be added if the system grows. 

For the management events handled by the CMA system, the information model is inspired from the X.740 
ITU standard, which defines two notification types: serviceReport and usageReport. Currently, we use 
only the serviceReport type. The OIDs are defined as follows in X.740: 

securityAuditTrail-Notification = 2.9.2.8.10 

serviceReport notification OID = 2.9.2.8.10.1 
serviceReportCause OID = 2.9.2.8.0.1 

serviceRequest ServiceReportCause ::= {serviceReportCause 1} 

serviceResponse ServiceReportCause ::= {serviceReportCause 3} 

 

The information contained in a management event is: 

1. service Id. This is the integer code converted as a string. 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

Page 102  © 1998 Trumpet Consortium 

2. MOC. This is the integer code of the management service converted to character string. 

3. event type. This is the OID of the notification. In this case, it will be constant and equal to 2.9.2.8.10.1 
(serviceReport notification). 

4. serviceReportCause . This is an attribute of the serviceReport notification. This attribute is an OID, 
one of: 

serviceRequest = 2.9.2.8.0.1.1 

serviceResponse = 2.9.2.8.0.1.3 

5. Action name. A character string that identifies the action to report. The exact name may differ from 
one entity to the other (e.g. what the Xuser manager calls "reserveGBCConnection" may be known as 
"Reserve Connection" for the customer server). 

6. Action Info. A character string conveying any relevant information (e.g. some of the action arguments 
or part of the action result). 

 

For each event, all of the above 6 parts of information must be present in the event data as character strings, 
concatenated by using the character '$' as separator. The resulting string is then sent to the ME over a TCP 
socket. The ME hostname and port number will be specified in a configuration file. These parameters can be 
read directly from the file by the client processes (CPN server, customer server, Xuser manager), or provided 
as command line arguments, or set as environment variables. 

The concerned servers (CPN server, customer server, Xuser manager) should generate an event each time 
they are about to call or they have just returned from a management operation: reserve connection, modify 
connection, or release connection. To summarize: 

"<serviceId>$<MOC>$2.9.2.8.10.1$<service report cause>$<action name>$<action info>" 

As an example, the Xuser manager may generate an event containing the following data, just before sending 
a CMIP action request for connection reservation to the PNOs: 

"3$6$2.9.2.8.10.1$2.9.2.8.0.1.1$reserveGBCConnection$userId = 876394426 / destination = 
123456789 / gBCDirectionality = 0" 

The above string is decoded by the CMA ME into the following information: 

 3 :     serviceId of the Xuser manager 

 6 :     code of the XuserVaspManagementService (MOC) 

 2.9.2.8.10.1 :    event type (constant, OID for serviceReport notification) 

 2.9.2.8.0.1.1 :    service report cause (here it is serviceRequest) 

 reserveGBCConnection :  name of the action called by the Xuser manager. 

 userId = 876394426 ...etc... :  any additional information as text. 

 

5.9.3 Version, Release history 

CMA TRUMPET Messaging System 1.0 (version used for the Scottish and Sophia trials), May 1998. 

 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

© 1998 Trumpet Consortium  Page 103 

6 SECURITY DEVELOPERS MANUAL 

6.1 Adapter Object 

6.1.1 Engineering Object Model 

The X/Open Management Protocol (XMP) API provides a common access mecanism to both CMIP and 
SNMP services. XMP employs the X/Open OSI-Abstract-Data Manipulation (XOM) API to manipulate 
variables and parameters. 

XMP consists of a library of C functions that reflect the services of CMIS and SNMP. It embodies the 
object-oriented OSI model of management. Manager applications use XMP to access managed objects, and 
agents applications use XMP to respond. XMP can be used synchronously or asynchronously. 

The functions in XOM are used to create, examine, modify and destroy the arguments to XMP functions. It 
provides a generalized data handling mechanism, and manipulates data types that arise from Abstract 
Syntax Notation 1 (ASN.1) definitions. 

As reflected in Figure 47, all network management applications can use XMP, with XOM, for standards-
based process-to-process communications. 

Management
Application

Entity

XOM
XMP

Communication
Infrastructure

(CMIP or SNMP)

Network  

Figure 47: XOM, XMP and MAE 

The XMP Adapter is responsible for securing the XMP function calls, which in turn map to CMIP requests 
and responses. 

The approach chosen in Trumpet is to modify the MAE's source code to include security-related calls to the 
adapter where appropriate. The MAE is then made "security-aware". 

As the adapter must protect all PDU exchanged between manager and agents applications, implementers 
have to insert security-related code before XMP "send request" function calls to protect the outgoing PDU 
; and after XMP "get response" function calls to deprotect the incoming PDU. 

The adapter interface is designed to simplify this process, as all the functions defined closely match that of 
XMP, having the same name and accepting similar arguments. 

6.1.1.1 Secured Association Establishment 

When using XMP, you can either rely on TMN Platform Infrastructure to control associations, providing 
automatic establishment and release, or you can retain application control over these functions. The 
Association Control Service Element (ACSE) extensions to the XMP API give you this capability. 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

Page 104  © 1998 Trumpet Consortium 

Explicit association control is very useful in certain situations : 

• an application may need to set certain ACSE parameters in order to interoperate with peer applications 
based on other TMN Platforms, 

• with explicit association control, an application can establish multiple associations with a peer, each 
association having its own context. This can be useful if several kinds of transactions are occurring 
between pair of applications, 

• a management association established using the XMP ACSE extensions is never terminated unless one 
side explicitly terminates it, or unless connectivity between the two sides is lost. Therefore, a 
management application can set up an association and use it as a test of connectivity with the remote 
peer : connectivity can be tested at any time by sending a message on that association. 

Management associations established with Automatic Connection Management (ACM) are shared 
associations , that can be used by any Management Application Entity residing on the same host. By 
contrast, a management association established by two applications, both using the ASCE extensions, is a 
private association between those applications, and can only be used by them. 

When using the Trumpet security package, secured associations estalibshed between applications must be 
private : each secured association rely on a distinct security context that must be negotiated during the 
association establishment, and terminated when releasing the association. Therefore, the ACSE extensions 
must be used by client Management Application Entities when they want to establish secured associations. 

The XMP ACSE extensions add five functions to the XMP API. They are listed and descibed in Table 4. For 
more details, see the manpage for each function. 

 

ASCE Function Desciption 

mp_assoc_req() Called after mp_bind() to request the establishment 
of a connected session. 

mp_assoc_rsp() Used to reply to a previously invoked association 
request. 

mp_release_req() Used to request the release of a connected session. 

mp_release_rsp() Used to reply to a previously invoked release 
request. 

mp_abort_req() Used to abort a management association. This 
service is defined as non-confirmed. 

Table 6 : ACSE Functions 

The XMP Adapter provides a set of functions that are responsible for negociating the security context.  
Calls to these functions must be inserted in the MAE's source code before any ACSE function is called. 
They act by inserting and/or transforming proper parameters in the XOM structures that are later used by 
the ACSE functions. 

Table 5 lists and describes the ACSE-related functions that are provided by the XMP Adapter. 

 

XMP Adapter Function Desciption 

sp_assoc_req() Called before mp_assoc_req() to supply the 
necessary security parameters for the establishment 
of a connected session. 

sp_assoc_rsp() Called before mp_assoc_rsp() to supply the 
necessary security parameters for the reply to a 
previously invoked association request. 

sp_release_req() Called before mp_release_req() to supply the 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

© 1998 Trumpet Consortium  Page 105 

necessary security parameters to request the release 
of a connected session. 

sp_release_rsp() Called before mp_release_rsp() to supply the 
necessary security parameters to release a connected 
session. 

sp_abort_req() Called before mp_release_rsp() to supply the 
necessary security parameters to abort a connected 
session. 

Table 7 : ACSE-related Adapter functions 

Figure 48 outlines the steps needed in order to establish and release a secured association. For the sake of 
simplicity, calls to XOM functions are not presented, but the main parameters needed to XMP functions are 
indicated where appropriate. 

 

Requestor MAE  Responder MAE 

mp_initialize()  mp_initialize() 

mp_negociate(...disable ACM...)  mp_negociate(...disable ACM...) 

mp_bind()  mp_bind() 

sp_assoc_req() 
mp_assoc_req() 

  

  mp_receive(...MP_ASSOC_IND...) 
sp_receive() 

  sp_assoc_rsp() 
mp_assoc_rsp() 

mp_receive(...MP_ASSOC_CNF...) 
sp_receive() 

  

(XMP calls)  (XMP calls) 

sp_release_req() 
mp_release_req() 

  

  mp_receive(...MP_RELEASE_REQ...
) 
sp_receive() 

  sp_release_rsp() 
mp_release_rsp() 

mp_receive(...MP_RELEASE_RSP...
) 

sp_receive() 

  

Figure 48: Secured association establishment & release 

The sequence of operations is exactly the same as for a non-secured association ; calls to the Trumpet 
security package are just are inserted before all XMP functions that send data and after all XMP functions 
that receive data (the mp_receive() and sp_receive() functions are described later). 

6.1.1.2 Secured XMP Requests 

As previously mentionned, XMP supports the seven CMIS services through the CMIS OM package. The 
CMIS services are mapped to XMP function names, as shown in Table 6. 

 

CMIS service XMP functions Description (of request only) 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

Page 106  © 1998 Trumpet Consortium 

ACTION mp_action_req() 
mp_action_rsp() 

Requests that the responder perform one of 
the actions defined for an object. 

CANCEL-GET mp_cancel_get_req() 
mp_cancel_get_rsp() 

Requests that the responder terminate 
servicing an earlier "get" request that has not 
yet completed. 

CREATE mp_create_req() 
mp_create_rsp() 

Requests that the responder create an 
instance (object) of the specified object class. 

DELETE mp_delete_req() 
mp_delete_rsp() 

Requests that the responder destroy a 
particular instance (object) of an object class. 

EVENT-REPORT mp_event_report_req() 
mp_event_report_rsp() 

Issues one of the notifications (events) 
defined for a managed object. 

GET mp_get_req() 
mp_get_rsp() 

Requests that the responder supply the 
value(s) of one or more object attributes. 

SET mp_set_req() 
mp_set_rsp() 

Requests that the responder modify the 
value(s) of one or more object attributes. 

Table 8 : XMP functions supporting CMIS services 

As mentioned earlier, security-related calls to the adapter have to be made before XMP "send request" 
function calls and after XMP "get response" function call. 

These calls are described in Table 7 below, they basically share the same input parameters as the 
corresponding XMP function calls. Their role is either to protect or deprotect an XOM object, provided as 
an input argument, and providing the result in an output OM object. 

Protection of the OM input arguments, depending on the security context and policy requirements, can 
consist of confidentiality and/or integrity. 

The returned protected XOM objects must not be modified or tampered in any way after they are produced ; 
they can only be send to the peer entity through the corresponding XMP call. 

 

CMIS service XMP functions Corresponding Adapter functions 

ACTION mp_action_req() 
mp_action_rsp() 

sp_action_req() 
sp_action_rsp() 

CANCEL-GET mp_cancel_get_req() 
mp_cancel_get_rsp() 

sp_cancel_get_req() 
sp_cancel_get_rsp() 

CREATE mp_create_req() 
mp_create_rsp() 

sp_create_req() 
sp_create_rsp() 

DELETE mp_delete_req() 
mp_delete_rsp() 

sp_delete_req() 
sp_delete_rsp() 

EVENT-REPORT mp_event_report_req() 
mp_event_report_rsp() 

sp_event_report_req() 
sp_event_report_rsp() 

GET mp_get_req() 
mp_get_rsp() 

sp_get_req() 
sp_get_rsp() 

SET mp_set_req() 
mp_set_rsp() 

sp_set_req() 
sp_set_rsp() 

Table 9 : CMIS-related Adapter functions 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

© 1998 Trumpet Consortium  Page 107 

6.1.1.3 Secured Asynchronous Operations  

When a synchronous function call is performed, the function does not return unless the effect of the call is 
complete. In opposition, asynchronous function calls do start some process and return. They are used by 
applications that need to do multiple independent function calls, an example being a network management 
application that interrogates multiple distinct network equipment. 

The XMP API allows you to make any call (except mp_cancel_get_req()) synchronously, and to use 
any requester function asynchronously. 

When you make synchronous requester calls, the parameters returned by the responder application are 
available through the result_return OM object, provided the request was successfully processed. 

When you make an asynchronous function call, the XMP interface first determines if the call is valid. If so, 
the transaction with the responder is initiated. Your application is then allowed to continue processing while 
the request is serviced. If a response is expected, you must later call mp_receive() to determine the 
outcome of the request. 

When such asynchronous function calls are secured with the Trumpet security package, the requester 
application must call the sp_receive() function in order to exploit the information provided by the 
mp_receive()function. 

On the responder side, the application has no knowledge whether the call is performed synchronously or 
asynchronously, therefore the sequence of operations is the same as described in the previous chapter. 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

Page 108  © 1998 Trumpet Consortium 

6.1.2 Supported component interfaces 

NAME 

 sp_abort_req - Protects the parameters to an ACSE association abort request. 

SYNOPSIS  
 #include <xom.h> 
 #include <tsp.h> 
 
 SP_status sp_assoc_req(  
  OM_private_object session, 
  OM_private_object context, 
  OM_object argument 
  OM_object *protected); 

 

DESCRIPTION 

This function is used to protect the parameters to an ACSE association abort request just before the 
corresponding XMP function call is made. 

Parameters 

session The OM object against which the operation will be performed. It must be a 
private OM object previously returned as part of an Assoc-Argument or 
Assoc-Result object. This object must belong to an ACM-disabled 
workspace. 

context Represents the management context to be used for this operation. This must 
be a private OM object or the constant Default-Context 
{ MP_DEFAULT_CONTEXT }. 

argument The unprotected information supplied as the argument of an Abort 
operation. It is an instance of a subclass of the OM class Abort-Argument. 

protected Returned upon successful completion of the function call. The protected 
information that is to be supplied to mp_abort_req(). 

 

RESULTS 

This function returns : 

MP_SUCCESS 

MP_NO_WORKSPACE 

MP_INVALID_SESSION 

MP_INSUFFICIENT_RESSOURCES 

MP_ACCESS_CONTROL_FAILURE 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

© 1998 Trumpet Consortium  Page 109 

NAME 

 sp_action_req - Protects the parameters to a CMIS Action request. 

SYNOPSIS 
 #include <xom.h> 
 #include <tsp.h> 
 
 SP_status sp_action_req(  
  OM_private_object session, 
  OM_private_object context, 
  OM_object argument, 
  OM_object *protected); 
 

DESCRIPTION 

This function is used to protect the parameters to a CMIS Action request just before the 
corresponding XMP function call is made. 

Parameters 

session An OM object that identifies the management session in which the 
operation/notification will be requested. This must be a private OM object 
previously returned from mp_bind(). This object must belong to an ACM-
disabled workspace. 

context The context in which the operation should be performed. This must be a 
private OM object or the constant Default-Context 
{ MP_DEFAULT_CONTEXT }. 

argument An unprotected OM object which provides the information about the 
Action request and the data for that action. It is an instance of a subclass of 
the OM class Action-Argument. 

protected Returned upon successful completion of the function call. The protected 
information that is to be supplied to mp_action_req(). 

 

RESULTS 

This function returns : 

MP_SUCCESS 

MP_NO_WORKSPACE 

MP_INVALID_SESSION 

MP_INSUFFICIENT_RESSOURCES 

SP_NO_SECURITY_CONTEXT 

SP_ACCESS_CONTROL_FAILURE 

SP_AUDIT_ALARM_FAILURE 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

Page 110  © 1998 Trumpet Consortium 

NAME 

 sp_action_rsp - Protects the parameters to a CMIS Action reply. 

SYNOPSIS  
 #include <xom.h> 
 #include <tsp.h> 
 
 SP_status sp_action_rsp(  
  OM_private_object session, 
  OM_private_object context, 
  OM_object response, 
  OM_object *protected); 
 

DESCRIPTION 

This function is used to protect the parameters to a CMIS Action reply just before the corresponding 
XMP function call is made. 

Parameters 

session An OM object that identifies the management session in which the 
operation/notification was requested. This must be a private OM object 
previously returned from mp_bind(). This object must belong to an ACM-
disabled workspace. 

context The context in which the operation should be performed. This must be a 
private OM object or the constant Default-Context 
{ MP_DEFAULT_CONTEXT }. 

response An unprotected OM object supplied as a response information about the 
Action request. It is an instance of one of the following OM classes : 
Action-Result, Linked-Reply-Argument, Absent-Object or Service-Error. 

protected Returned upon successful completion of the function call. The protected 
information that is to be supplied to mp_action_rsp(). 

 

RESULTS 

This function returns : 

MP_SUCCESS 

MP_NO_WORKSPACE 

MP_INVALID_SESSION 

MP_INSUFFICIENT_RESSOURCES 

SP_NO_SECURITY_CONTEXT 

SP_ACCESS_CONTROL_FAILURE 

SP_AUDIT_ALARM_FAILURE 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

© 1998 Trumpet Consortium  Page 111 

NAME 

 sp_assoc_req - Protects the parameters to an ACSE association establishment request. 

SYNOPSIS  
 #include <xom.h> 
 #include <tsp.h> 
 
 SP_status sp_assoc_req(  
  OM_private_object session, 
  OM_private_object context, 
  OM_object argument 
  OM_object *protected); 

 

DESCRIPTION 

This function is used to protect the parameters to an ACSE association establishment request just 
before the corresponding XMP function call is made. 

Parameters 

session The OM object against which the operation will be performed. It must be a 
private OM object previously returned from mp_bind(). This object must 
belong to an ACM-disabled workspace. 

context Represents the management context to be used for this operation. This must 
be a private OM object or the constant Default-Context 
{ MP_DEFAULT_CONTEXT }. 

argument The unprotected information that represents the argument of an Associate 
operation. It is an instance of a subclass of the OM class Assoc-Argument. 

protected Returned upon successful completion of the function call. The protected 
information that is to be supplied to mp_assoc_req(). 

 

RESULTS 

This function returns : 

MP_SUCCESS 

MP_NO_WORKSPACE 

MP_INVALID_SESSION 

MP_INSUFFICIENT_RESSOURCES 

MP_ACCESS_CONTROL_FAILURE 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

Page 112  © 1998 Trumpet Consortium 

NAME 

 sp_assoc_rsp - Protects the parameters to an ACSE association establishment reply. 

SYNOPSIS  
 #include <xom.h> 
 #include <tsp.h> 
 
 SP_status sp_assoc_rsp(  
  OM_private_object session, 
  OM_private_object context, 
  OM_object response 
  OM_object *protected); 

 

DESCRIPTION 

This function is used to protect the parameters to an ACSE association establishment reply just 
before the corresponding XMP function call is made. 

Parameters 

session The OM object against which the operation will be performed. It must be a 
private OM object previously returned from mp_bind(). This object must 
belong to an ACM-disabled workspace. 

context Represents the management context to be used for this operation. This must 
be a private OM object or the constant Default-Context 
{ MP_DEFAULT_CONTEXT }. 

response The unprotected information supplied as a response of an Associate 
operation. It is an instance of a subclass of the OM class Assoc-Result. 

protected Returned upon successful completion of the function call. The protected 
information that is to be supplied to mp_assoc_rsp(). 

 

RESULTS 

This function returns : 

MP_SUCCESS 

MP_NO_WORKSPACE 

MP_INVALID_SESSION 

MP_INSUFFICIENT_RESSOURCES 

SP_ACCESS_CONTROL_FAILURE 

 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

© 1998 Trumpet Consortium  Page 113 

NAME 

 sp_cancel_get_req - Protects the parameters to a CMIS Cancel-Get request. 

SYNOPSIS  
 #include <xom.h> 
 #include <tsp.h> 
 
 SP_status sp_cancel_get_req(  
  OM_private_object session, 
  OM_private_object context, 
  OM_object argument, 
  OM_object *protected); 
 

DESCRIPTION 

This function is used to protect the parameters to a CMIS Cancel-Get request just before the 
corresponding XMP function call is made. 

Parameters 

session An OM object that identifies the management session in which the 
operation will be requested. This must be a private OM object previously 
returned from mp_bind(). This object must belong to an ACM-disabled 
workspace. 

context The context in which the operation should be performed. This must be a 
private OM object or the constant Default-Context 
{ MP_DEFAULT_CONTEXT }. 

argument An unprotected OM object which provides the information about which Get 
operation is to be cancelled. It is an instance of a subclass of the OM class 
Cancel-Get-Argument. 

protected Returned upon successful completion of the function call. The protected 
information that is to be supplied to mp_cancel_get_req(). 

 

RESULTS 

This function returns : 

MP_SUCCESS 

MP_NO_WORKSPACE 

MP_INVALID_SESSION 

MP_INSUFFICIENT_RESSOURCES 

SP_NO_SECURITY_CONTEXT 

SP_ACCESS_CONTROL_FAILURE 

SP_AUDIT_ALARM_FAILURE 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

Page 114  © 1998 Trumpet Consortium 

NAME 

 sp_cancel_get_rsp - Protects the parameters to a CMIS Cancel-Get reply. 

SYNOPSIS  
 #include <xom.h> 
 #include <tsp.h> 
 
 SP_status sp_cancel_get_rsp(  
  OM_private_object session, 
  OM_private_object context, 
  OM_object response, 
  OM_object *protected); 
 

DESCRIPTION 

This function is used to protect the parameters to a CMIS Cancel-Get reply just before the 
corresponding XMP function call is made. 

Parameters 

session An OM object that identifies the management session in which the 
operation will be requested. This must be a private OM object previously 
returned from mp_bind(). This object must belong to an ACM-disabled 
workspace. 

context The context in which the operation should be performed. This must be a 
private OM object or the constant Default-Context 
{ MP_DEFAULT_CONTEXT }. 

response An unprotected OM object supplied as a response information about the 
result of the Cancel-Get operation. It is an instance of one of the following 
OM classes : Absent-Object or Service-Error. 

protected Returned upon successful completion of the function call. The protected 
information that is to be supplied to mp_cancel_get_rsp(). 

 

RESULTS 

This function returns : 

MP_SUCCESS 

MP_NO_WORKSPACE 

MP_INVALID_SESSION 

MP_INSUFFICIENT_RESSOURCES 

SP_NO_SECURITY_CONTEXT 

SP_ACCESS_CONTROL_FAILURE 

SP_AUDIT_ALARM_FAILURE 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

© 1998 Trumpet Consortium  Page 115 

NAME 

 sp_create_req - Protects the parameters to a CMIS Create request. 

SYNOPSIS  
 #include <xom.h> 
 #include <tsp.h> 
 
 SP_status sp_create_req(  
  OM_private_object session, 
  OM_private_object context, 
  OM_object argument, 
  OM_object *protected); 
 

DESCRIPTION 

This function is used to protect the parameters to a CMIS Create request just before the 
corresponding XMP function call is made. 

Parameters 

session An OM object that identifies the management session in which the 
operation will be requested. This must be a private OM object previously 
returned from mp_bind(). This object must belong to an ACM-disabled 
workspace. 

context The context in which the operation should be performed. This must be a 
private OM object or the constant Default-Context 
{ MP_DEFAULT_CONTEXT }. 

argument An unprotected OM object which provides the information about the 
managed object to create and any data values attributes of the managed 
object. It is an instance of a subclass of the OM class Create-Argument. 

protected Returned upon successful completion of the function call. The protected 
information that is to be supplied to mp_action_req(). 

 

RESULTS 

This function returns : 

MP_SUCCESS 

MP_NO_WORKSPACE 

MP_INVALID_SESSION 

MP_INSUFFICIENT_RESSOURCES 

SP_NO_SECURITY_CONTEXT 

SP_ACCESS_CONTROL_FAILURE 

SP_AUDIT_ALARM_FAILURE 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

Page 116  © 1998 Trumpet Consortium 

NAME 

 sp_create_rsp - Protects the parameters to a CMIS Create reply. 

SYNOPSIS  
 #include <xom.h> 
 #include <tsp.h> 
 
 SP_status sp_create_rsp(  
  OM_private_object session, 
  OM_private_object context, 
  OM_object response, 
  OM_object *protected); 
 

DESCRIPTION 

This function is used to protect the parameters to a CMIS Create reply just before the corresponding 
XMP function call is made. 

Parameters 

session An OM object that identifies the management session in which the 
operation will be requested. This must be a private OM object previously 
returned from mp_bind().  This object must belong to an ACM-disabled 
workspace. 

context The context in which the operation should be performed. This must be a 
private OM object or the constant Default-Context 
{ MP_DEFAULT_CONTEXT }. 

response An unprotected OM object supplied as a response information about the 
Create request. It is an instance of one of the following OM classes : 
Create-Result, Absent-Object or Service-Error. 

protected Returned upon successful completion of the function call. The protected 
information that is to be supplied to mp_create_rsp(). 

 

RESULTS 

This function returns : 

MP_SUCCESS 

MP_NO_WORKSPACE 

MP_INVALID_SESSION 

MP_INSUFFICIENT_RESSOURCES 

SP_NO_SECURITY_CONTEXT 

SP_ACCESS_CONTROL_FAILURE 

SP_AUDIT_ALARM_FAILURE 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

© 1998 Trumpet Consortium  Page 117 

NAME 

 sp_delete_req - Protects the parameters to a CMIS Delete request. 

SYNOPSIS  
 #include <xom.h> 
 #include <tsp.h> 
 
 SP_status sp_delete_req(  
  OM_private_object session, 
  OM_private_object context, 
  OM_object argument, 
  OM_object *protected); 
 

DESCRIPTION 

This function is used to protect the parameters to a CMIS Delete request just before the 
corresponding XMP function call is made. 

Parameters 

session An OM object that identifies the management session in which the 
operation will be requested. This must be a private OM object previously 
returned from mp_bind(). This object must belong to an ACM-disabled 
workspace. 

context The context in which the operation should be performed. This must be a 
private OM object or the constant Default-Context 
{ MP_DEFAULT_CONTEXT }. 

argument An unprotected OM object which provides the information about the 
managed object to delete. It is an instance of a subclass of the OM class 
Delete-Argument. 

protected Returned upon successful completion of the function call. The protected 
information that is to be supplied to mp_delete_req(). 

 

RESULTS 

This function returns : 

MP_SUCCESS 

MP_NO_WORKSPACE 

MP_INVALID_SESSION 

MP_INSUFFICIENT_RESSOURCES 

SP_NO_SECURITY_CONTEXT 

SP_ACCESS_CONTROL_FAILURE 

SP_AUDIT_ALARM_FAILURE 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

Page 118  © 1998 Trumpet Consortium 

NAME 

 sp_delete_rsp - Protects the parameters to a CMIS Delete reply. 

SYNOPSIS  
 #include <xom.h> 
 #include <tsp.h> 
 
 SP_status sp_delete_rsp( 
  OM_private_object session, 
  OM_private_object context, 
  OM_object response, 
  OM_object *protected); 
 

DESCRIPTION 

This function is used to protect the parameters to a CMIS Delete reply just before the corresponding 
XMP function call is made. 

Parameters 

session An OM object that identifies the management session in which the 
operation will be requested. This must be a private OM object previously 
returned from mp_bind(). This object must belong to an ACM-disabled 
workspace. 

context The context in which the operation should be performed. This must be a 
private OM object or the constant Default-Context 
{ MP_DEFAULT_CONTEXT }. 

response An unprotected OM object supplied as a response information about the 
Delete operation. It is an instance of one of the following OM classes : 
Delete-Result, Linked-Reply-Argument, Absent-Object or Service-Error. 

protected Returned upon successful completion of the function call. The protected 
information that is to be supplied to mp_delete_rsp(). 

 

RESULTS 

This function returns : 

MP_SUCCESS 

MP_NO_WORKSPACE 

MP_INVALID_SESSION 

MP_INSUFFICIENT_RESSOURCES 

SP_NO_SECURITY_CONTEXT 

SP_ACCESS_CONTROL_FAILURE 

SP_AUDIT_ALARM_FAILURE 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

© 1998 Trumpet Consortium  Page 119 

NAME 

 sp_event_report_req - Protects the parameters to a CMIS Event-Report request. 

SYNOPSIS  
 #include <xom.h> 
 #include <tsp.h> 
 
 SP_status sp_event_report_req(  
  OM_private_object session, 
  OM_private_object context, 
  OM_object argument, 
  OM_object *protected); 
 

DESCRIPTION 

This function is used to protect the parameters to a CMIS Event-Report request just before the 
corresponding XMP function call is made. 

Parameters 

session An OM object that identifies the management session in which the 
operation will be requested. This must be a private OM object previously 
returned from mp_bind(). This object must belong to an ACM-disabled 
workspace. 

context The context in which the operation should be performed. This must be a 
private OM object or the constant Default-Context 
{ MP_DEFAULT_CONTEXT }. 

argument An unprotected OM object which provides the information about the event 
to be generated. It is an instance of a subclass of the OM class Event-
Report-Argument. 

protected Returned upon successful completion of the function call. The protected 
information that is to be supplied to mp_event_report_req(). 

 

RESULTS 

This function returns : 

MP_SUCCESS 

MP_NO_WORKSPACE 

MP_INVALID_SESSION 

MP_INSUFFICIENT_RESSOURCES 

SP_NO_SECURITY_CONTEXT 

SP_ACCESS_CONTROL_FAILURE 

SP_AUDIT_ALARM_FAILURE 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

Page 120  © 1998 Trumpet Consortium 

NAME 

 sp_event_report_rsp - Protects the parameters to a CMIS Event-Report reply. 

SYNOPSIS  
 #include <xom.h> 
 #include <tsp.h> 
 
 SP_status sp_event_report_rsp(  
  OM_private_object session, 
  OM_private_object context, 
  OM_object response, 
  OM_object *protected); 
 

DESCRIPTION 

This function is used to protect the parameters to a CMIS Event-Report reply just before the 
corresponding XMP function call is made. 

Parameters 

session An OM object that identifies the management session in which the 
operation will be requested. This must be a private OM object previously 
returned from mp_bind(). This object must belong to an ACM-disabled 
workspace. 

context The context in which the operation should be performed. This must be a 
private OM object or the constant Default-Context 
{ MP_DEFAULT_CONTEXT }. 

response An unprotected OM object supplied as a response information about the 
Event-Report. It is an instance of one of the following OM classes : Event-
Report-Result, Absent-Object or Service-Error. 

 

protected Returned upon successful completion of the function call. The protected 
information that is to be supplied to mp_event_report_rsp(). 

 

RESULTS 

This function returns : 

MP_SUCCESS 

MP_NO_WORKSPACE 

MP_INVALID_SESSION 

MP_INSUFFICIENT_RESSOURCES 

SP_NO_SECURITY_CONTEXT 

SP_ACCESS_CONTROL_FAILURE 

SP_AUDIT_ALARM_FAILURE 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

© 1998 Trumpet Consortium  Page 121 

NAME 

 sp_get_req - Protects the parameters to a Get request. 

SYNOPSIS  
 #include <xom.h> 
 #include <tsp.h> 
 
 SP_status sp_get_req(  
  OM_private_object session, 
  OM_private_object context, 
  OM_object argument, 
  OM_object *protected); 
 

DESCRIPTION 

This function is used to protect the parameters to a Get request just before the corresponding XMP 
function call is made. 

Parameters 

session An OM object that identifies the management session in which the 
operation will be requested. This must be a private OM object previously 
returned from mp_bind(). This object must belong to an ACM-disabled 
workspace. 

context The context in which the operation should be performed. This must be a 
private OM object or the constant Default-Context 
{ MP_DEFAULT_CONTEXT }. 

argument An unprotected OM object which provides the information about which 
attributes are to be retrieved. It is an instance of a subclass of the OM class 
Get-Argument. 

protected Returned upon successful completion of the function call. The protected 
information that is to be supplied to mp_get_req(). 

 

RESULTS 

This function returns : 

MP_SUCCESS 

MP_NO_WORKSPACE 

MP_INVALID_SESSION 

MP_INSUFFICIENT_RESSOURCES 

SP_NO_SECURITY_CONTEXT 

SP_ACCESS_CONTROL_FAILURE 

SP_AUDIT_ALARM_FAILURE 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

Page 122  © 1998 Trumpet Consortium 

NAME 

 sp_get_rsp - Protects the parameters to a Get reply. 

SYNOPSIS  
 #include <xom.h> 
 #include <tsp.h> 
 
 SP_status sp_action_rsp(  
  OM_private_object session, 
  OM_private_object context, 
  OM_object response, 
  OM_object *protected); 
 

DESCRIPTION 

This function is used to protect the parameters to a Get reply just before the corresponding XMP 
function call is made. 

Parameters 

session An OM object that identifies the management session in which the 
operation will be requested. This must be a private OM object previously 
returned from mp_bind(). This object must belong to an ACM-disabled 
workspace. 

context The context in which the operation should be performed. This must be a 
private OM object or the constant Default-Context 
{ MP_DEFAULT_CONTEXT }. 

response An unprotected OM object supplied as a response information about the 
Get operation. It is an instance of one of the following OM classes : Get-
Result, Linked-Reply-Argument, Absent-Object or Service-Error. 

protected Returned upon successful completion of the function call. The protected 
information that is to be supplied to mp_get_rsp(). 

 

RESULTS 

This function returns : 

MP_SUCCESS 

MP_NO_WORKSPACE 

MP_INVALID_SESSION 

MP_INSUFFICIENT_RESSOURCES 

SP_NO_SECURITY_CONTEXT 

SP_ACCESS_CONTROL_FAILURE 

SP_AUDIT_ALARM_FAILURE 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

© 1998 Trumpet Consortium  Page 123 

NAME 

 sp_receive - Unprotects the result or notification to an asynchronous operation. 

SYNOPSIS  
 #include <xom.h> 
 #include <tsp.h> 
 
 SP_status sp_receive(  
  OM_private_object session, 
  OM_private_object context, 
  OM_object protected, 
  OM_object *result); 
 

DESCRIPTION 

This function is used to unprotect the partial or complete result of an invoked management 
operation, or its reported management notification. 

Parameters 

session An OM object that identifies the management session in which the 
operation or notification was performed. This must be a private OM object 
previously returned from mp_bind(). This object must belong to an ACM-
disabled workspace. 

context The context in which the operation was performed. This must be a private 
OM object ; the constant Default-Context 
{ MP_DEFAULT_CONTEXT } is explicitly not permitted. 

protected An protected OM object obtained through a preceeding 
mp_receive()function call. The abstract class of this object is dependent 
on the value of the primitive and completion_flag parameters. It might be 
an instance of one of the following OM classes : Action-Argument, Action-
Result, Cancel-Get-Argument, Absent-Object, Create-Argument, Create-
Result, Delete-Argument, Delete-Result, Event-Report-Argument, Event-
Report-Result, Get-Argument, Get-Result, Set-Argument, Set-Result, 
Assoc-Argument, Assoc-Result, Release-Argument, Release-Result or 
Abort-Argument. 

protected Returned upon successful completion of the function call. This object is of 
the same OM class as the protected argument. 

 

RESULTS 

This function returns : 

MP_SUCCESS 

MP_NO_WORKSPACE 

MP_INVALID_SESSION 

MP_INSUFFICIENT_RESSOURCES 

SP_NO_SECURITY_CONTEXT 

SP_AUDIT_ALARM_FAILURE 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

Page 124  © 1998 Trumpet Consortium 

NAME 

 sp_release_req - Protects the parameters to an ACSE association release request. 

SYNOPSIS  
 #include <xom.h> 
 #include <tsp.h> 
 
 SP_status sp_release_req(  
  OM_private_object session, 
  OM_private_object context, 
  OM_object argument 
  OM_object *protected); 

 

DESCRIPTION 

This function is used to protect the parameters to an ACSE association release request just before 
the corresponding XMP function call is made. 

Parameters 

session The OM object against which the operation will be performed. It must be a 
private OM object previously returned as part of an Assoc-Argument or 
Assoc-Result object. This object must belong to an ACM-disabled 
workspace. 

context Represents the management context to be used for this operation. This must 
be a private OM object or the constant Default-Context 
{ MP_DEFAULT_CONTEXT }. 

argument The unprotected information that represents the argument of a Release 
operation. It is an instance of a subclass of the OM class Release-
Argument. 

protected Returned upon successful completion of the function call. The protected 
information that is to be supplied to mp_release_req(). 

 

RESULTS 

This function returns : 

MP_SUCCESS 

MP_NO_WORKSPACE 

MP_INVALID_SESSION 

MP_INSUFFICIENT_RESSOURCES 

SP_NO_SECURITY_CONTEXT 

SP_ACCESS_CONTROL_FAILURE 

SP_AUDIT_ALARM_FAILURE 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

© 1998 Trumpet Consortium  Page 125 

NAME 

 sp_release_rsp - Protects the parameters to an ACSE association release reply. 

SYNOPSIS  
 #include <xom.h> 
 #include <tsp.h> 
 
 SP_status sp_assoc_rsp(  
  OM_private_object session, 
  OM_private_object context, 
  OM_object response 
  OM_object *protected); 

 

DESCRIPTION 

This function is used to protect the parameters to an ACSE association release reply just before the 
corresponding XMP function call is made. 

Parameters 

session The OM object against which the operation will be performed. It must be a 
private OM object previously returned as part of an Assoc_Argument or 
Assoc-Result object. This object must belong to an ACM-disabled 
workspace. 

context Represents the management context to be used for this operation. This must 
be a private OM object or the constant Default-Context 
{ MP_DEFAULT_CONTEXT }. 

response The unprotected information supplied as a response to a Release operation. 
It is an instance of a subclass of the OM class Release-Result. 

protected Returned upon successful completion of the function call. The protected 
information that is to be supplied to mp_release_rsp(). 

 

RESULTS 

This function returns : 

MP_SUCCESS 

MP_NO_WORKSPACE 

MP_INVALID_SESSION 

MP_INSUFFICIENT_RESSOURCES 

SP_NO_SECURITY_CONTEXT 

SP_ACCESS_CONTROL_FAILURE 

SP_AUDIT_ALARM_FAILURE 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

Page 126  © 1998 Trumpet Consortium 

NAME 

 sp_set_req - Protects the parameters to a Set request. 

SYNOPSIS  
 #include <xom.h> 
 #include <tsp.h> 
 
 SP_status sp_get_req(  
  OM_private_object session, 
  OM_private_object context, 
  OM_object argument, 
  OM_object *protected); 
 

DESCRIPTION 

This function is used to protect the parameters to a Set request just before the corresponding XMP 
function call is made. 

Parameters 

session An OM object that identifies the management session in which the 
operation will be requested. This must be a private OM object previously 
returned from mp_bind(). This object must belong to an ACM-disabled 
workspace. 

context The context in which the operation should be performed. This must be a 
private OM object or the constant Default-Context 
{ MP_DEFAULT_CONTEXT }. 

argument An unprotected OM object which provides the information about which 
attributes are to be modified. It is an instance of a subclass of the OM class 
Set-Argument. 

protected Returned upon successful completion of the function call. The protected 
information that is to be supplied to mp_set_req(). 

 

RESULTS 

This function returns : 

MP_SUCCESS 

MP_NO_WORKSPACE 

MP_INVALID_SESSION 

MP_INSUFFICIENT_RESSOURCES 

SP_NO_SECURITY_CONTEXT 

SP_ACCESS_CONTROL_FAILURE 

SP_AUDIT_ALARM_FAILURE 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

© 1998 Trumpet Consortium  Page 127 

NAME 

 sp_set_rsp - Protects the parameters to a Set reply. 

SYNOPSIS  
 #include <xom.h> 
 #include <tsp.h> 
 
 SP_status sp_action_rsp(  
  OM_private_object session, 
  OM_private_object context, 
  OM_object response, 
  OM_object *protected); 
 

DESCRIPTION 

This function is used to protect the parameters to a Set reply just before the corresponding XMP 
function call is made. 

Parameters 

session An OM object that identifies the management session in which the 
operation will be requested. This must be a private OM object previously 
returned from mp_bind(). This object must belong to an ACM-disabled 
workspace. 

context The context in which the operation should be performed. This must be a 
private OM object or the constant Default-Context 
{ MP_DEFAULT_CONTEXT }. 

response An unprotected OM object supplied as a response information about the 
Set operation. It is an instance of one of the following OM classes : Set-
Result, Linked-Reply-Argument, Absent-Object or Service-Error. 

protected Returned upon successful completion of the function call. The protected 
information that is to be supplied to the mp_set_rsp(). 

 

RESULTS 

This function returns : 

MP_SUCCESS 

MP_NO_WORKSPACE 

MP_INVALID_SESSION 

MP_INSUFFICIENT_RESSOURCES 

SP_NO_SECURITY_CONTEXT 

SP_ACCESS_CONTROL_FAILURE 

SP_AUDIT_ALARM_FAILURE 

 

6.1.3 Version, Release history, Known bugs 

0.1 First level of capability: authentication. 

 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

Page 128  © 1998 Trumpet Consortium 

6.2 Secure Management Association 

6.2.1 Engineering Object Model 

The Secure Management Association Support Component (SMASC) is that component of the management 
system which provides the management applications with the means to secure the management association 
with other management applications located in another management system. The main purpose of the 
SMASC is to isolate the security-related components from the application code. This approach has the 
following advantages:  

• the security can easily be added to / removed from an existing application, without affecting its internal 
structure,  

• the security-related code can be designed, programmed and verified independently by security-aware 
personnel,  

• the addition of auditing capacities for security-related events is made easier and safer,  

• the resulting code can easily be customised to accommodate new security policies.  

On behalf of a management entity, the SMASC authenticates and control the access to peer management 
applications; it also initialises the security context for further security services to be used on the 
association, in particular it establishes a session secret key if the requested Quality of Protection requires 
integrity and / or confidentiality of communicated data. 

The following figure shows the main components of the security architecture, the internal structure of the 
SMASC and the contract interfaces of the SMASC to other components. The security services of the 
SMASC can be accessed through Adapter Components. The purpose of the Adapter Components is to 
transform technology specific syntax (e.g. XOM objects [XOM]) to generic data structures (e.g. BER 
encoding). With this approach, platform specific code can be restricted to the Adapter Component and the 
SMASC can be reused without major modifications for other management platforms.  

The SMASC is interfaced with:  

?  the Security Event Logging and Forwarding (SELF) component to keep track of all relevant security 
events occurring on the management associations.  

 

The SMASC is decomposed into object classes as follows: 

?  a Secure Management Association Support (SMAS) object which co-ordinates the behaviour of the 
whole component,  

?  a SSO object, which provides generic security services such as peer authentication, integrity, encryption 
and digital signatures, The SSO is implemented using existing commercial products (SECUDE) which 
provides: 

?   a standard [RFC 1508] GSS interface to supply generic security services. This interface is 
coordinated to the CerticateHandling object.  

?  a CertificateHandling object, which performs key handling such as caching, fetching certificates 
from directories and checking certificates revocation lists. The CertificateHandling object can 
interact with external services for certificate and CRL distribution, for example offered in conjunction 
with a CA TTP. The LDAP protocol (RFC 1777, 1995) is usable for fetching of certificates and CRLs. 

?  a SecProfile object to provide the profile and the Access Control files to use to interact with a remote 
MAE, 

?  a AccessControl object to control the access to the management association and the validity of 
operation on  managed objects. 

The SMASC is also interfaced with:  

?  the Security Event Logging and Forwarding (SELF) component to keep track of all relevant security 
events occurring on the management associations.  

 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

© 1998 Trumpet Consortium  Page 129 

Management
Service
Component

Adapter
Component

SecureManagement Association Support Component

SMAS

AccessControlSecProfile SSO
GSS
API

Certificate
Handling

Secude

SELF
component

Security
eventsMAE Adapter

ASN1
Codec

 

Figure 49: Graphical Representation of the Secure Management Association Component 

Note that in order to establish a secure management association, a management entity must have disabled 
any type of automatic connection mechanism and take explicit control over the association. 

6.2.2 Supported component interfaces 

6.2.2.1 Function: smasc_init 

NAME 

 smasc_init - Initialises the SMASC. 

 

SYNOPSIS  
 #include <smasc.h> 
 
 smasc_error smasc_init(  
  char *name, 
  smasc_role role); 
 

DESCRIPTION 

This function is used by the Adapter to set up the SMASC intrinsic variables, and to acquire the 
credentials for future secured association processes. 

 The intrinsic variables setup consists of: 

- the socket address setup to communicate with the SELF, 

- the managed object instance setup to be used in the events sent to the SELF,  

- the security rules setup of the four profiles. 

 

Parameters 

name The MAE’s LDAP Distinguished Name. 

role The role of entity for the future connection : SMP_SERVER, SMP_CLIENT 

 

Environment variables 

SELF_HOST The hostname for the SELF socket address (default value =“localhost”).   

SELF_PORT The port for the SELF socket address (default value =50095). 

XUSER_MANAGER_ID The managed object instance (MOI) for a “SMP Client” (default value =3). 

XUSER_AGENT_ID The managed object instance (MOI) for a “SMP Server” (default value =4). 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

Page 130  © 1998 Trumpet Consortium 

RULES_PATH The path to find the security rules configuration file (mandatory named 
“rulesProfiles.txt”). The default security rules are set according to D8 
specifications.  

 

RESULTS 

This function returns to the Adapter : 

SMP_ERROR Null string given as name. 

 The role value isn’t valid. 

SMP_AUTH_F The acquisition of the credentials failed. 

SMP_OK The initiation succeeded. 

 

EVENTS 

 This function sends to the SELF the following events: 

  

Service Type Event Type  Initiator DN Target DN Additional Info 

Authentication AuthFailure Initiator DN Null Message=<No credentials acquired> 

Authentication Notification Initiator DN Null Message=<Server authenticated> 

Authentication Notification Initiator DN Null Message=<Client authenticated> 

 

6.2.2.2 Function: smasc_assoc_req 

NAME 

 smasc_assoc_req - Request for a token to establish a secured association. 

SYNOPSIS  
 #include <smasc.h> 
 
 smasc_error smasc_assoc_req(  
  char *target, 
  smasc_token *token); 
 

DESCRIPTION 

This function is used by the Adapter (in a client task) to initiate and continue the secured 
association process by providing tokens to be sent to the target MAE. 

The number of exchanges for a secured association isn’t a priori known, the association process 
needs to be continued until success. 

This function first determines the security profile, then (if requested) verifies the permission of the 
association, and provides a token for association process.  

Parameters 

target The target MAE’s LDAP Distinguished Name. 

token Returned upon successful completion of the function call. The 
authentication token to be sent to the target MAE. 

RESULTS 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

© 1998 Trumpet Consortium  Page 131 

This function returns to the adapter: 

SMP_ERROR The entity has not or wrongly been initiated before. 

SMP_AUTH_F The security profile hasn’t been found. 

 The association isn’t allowed. 

 The authentication failed. 

 The association has already been established. 

SMP_OK The secured association succeeded. A returned token with a no-null length 
has to be sent. 

SMP_CONTINUE The secured association needs to be continued. 

 

EVENTS 

 This function sends to the SELF the following events: 

  

Service Type  Event Type Initiator DN Target DN Additional Info 

Authentication Authentication 
Failure 

Initiator DN Target DN Message=<Try to initiate an 
association already established> 

Authentication Authentication 
Failure 

Initiator DN Target DN Message=<Security profile not 
found> 

Access Control Unauthorised 

AccessAttempt 

Initiator DN Target DN Profile=<XXX> 
Message=<Association permission 
not allowed> 

Authentication Notification Initiator DN Target DN Profile=<XXX> 
Message=<Authentication 
succeeded> 

Authentication Authentication 
Failure 

Initiator DN Target DN Profile=<XXX> 
Message=<Authentication failed> 

Key 
Management 

Key Expired Initiator DN Target DN Profile=<XXX> Message=<Key 
expired> 

 

6.2.2.3 Function: smasc_assoc_rec 

NAME 

 smasc_assoc_rec - Reception of a token for a secured association. 

SYNOPSIS  
 #include <smasc.h> 
 
 smasc_error smasc_assoc_rec(  
  char *target, 
  smasc_token token); 
 

DESCRIPTION 

This function is used by the Adapter (in a client task) to continue a secured association process by 
receiving tokens from the target MAE. 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

Page 132  © 1998 Trumpet Consortium 

The number of exchanges for a secured association isn’t a priori known, the process needs to be 
continued until success. 

Parameters 

target The target MAE’s LDAP Distinguished Name. 

token The authentication token received from the target MAE. 

 

RESULTS 

This function returns: 

SMP_ERROR The entity has not or wrongly been initiated before. 

 The “smasc_assoc_req” function hasn’t been called before. 

SMP_AUTH_F The authentication failed. 

SMP_OK The secured association succeeded. 

SMP_CONTINUE The secured association needs to be continued. 

 

EVENTS 

 This function sends to the SELF the following events: 

  

Service Type  Event Type Initiator DN Target DN Additional Info 

Authentication Authentication 
Failure 

Initiator DN Target DN Profile=<XXX> Message=<Null 
authentication token received> 

Authentication Notification Initiator DN Target DN Profile=<XXX> 
Message=<Authentication 
succeeded> 

Authentication Authentication 
Failure 

Initiator DN Target DN Profile=<XXX> 
Message=<Authentication failed> 

Key 
Management 

Key Expired Initiator DN Target DN Profile=<XXX> Message=<Key 
expired> 

 

6.2.2.4 Function: smasc_assoc_ind 

NAME 

 smasc_assoc_ind - Indication of received token for secured association. 

SYNOPSIS  
 #include <smasc.h> 
 
 smasc_error smasc_assoc_ind(  
  char *target, 
  smasc_token token); 
 

DESCRIPTION 

This function is used by the Adapter (in a server task) to accept and follow the secured association 
process by receiving tokens from the target MAE. 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

© 1998 Trumpet Consortium  Page 133 

The number of exchanges for a secured association isn’t a priori known, the process needs to be 
continued until successful. 

This function first determines the security profile, then (if requested) verifies the permission of the 
association, and accepts tokens for the association process.  

Parameters 

target The target MAE’s LDAP Distinguished Name. 

token The authentication token received from the target MAE. 

RESULTS 

This function returns: 

SMP_ERROR The entity has not or wrongly been initiated before. 

SMP_AUTH_F The authentication failed. 

SMP_OK The secured association succeeded. 

SMP_CONTINUE The secured association needs to be continued. 

 

EVENTS 

 This function sends to the SELF the following events: 

  

Service Type Event Type  Initiator DN Target DN Additional Info 

Authentication Authentication 
Failure 

Initiator DN Target DN Message=<Try to initiate an 
association already established> 

Authentication Authentication 
Failure 

Initiator DN Target DN Message=<Security profile not 
found> 

Access Control Unauthorised 

Access Attempt 

Initiator DN Target DN Profile=<XXX> 
Message=<Association permission 
not allowed> 

Authentication Notification Initiator DN Target DN Profile=<XXX> 
Message=<Authentication 
succeeded> 

Authentication Authentication 
Failure 

Initiator DN Target DN Profile=<XXX> 
Message=<Authentication failed> 

Authentication Authentication 
Failure 

Initiator DN Target DN Profile=<XXX> Message=<Null 
authentication token received> 

Authentication Authentication 
Failure 

Initiator DN Target DN Profile=<XXX> 
Message=<Authentication 
succeeded with a usurped name> 

Key 
Management 

Key Expired Initiator DN Target DN Profile=<XXX> Message=<Key 
expired> 

 

6.2.2.5 Function: smasc_assoc_rsp 

NAME 

 smasc_assoc_rsp - Response token for a secured association. 

SYNOPSIS  



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

Page 134  © 1998 Trumpet Consortium 

 #include <smasc.h> 
 
 smasc_error smasc_assoc_rsp(  
  char *target, 
  smasc_token *token); 
 

DESCRIPTION 

This function is used by the Adapter (in a server task) to continue the secured association process 
by providing response tokens to be sent to the target MAE. 

The number of exchanges for a secured association isn’t a priori known, the process needs to be 
continued until successful. 

This function only continues the process of association. 

Parameters 

target The target MAE’s LDAP Distinguished Name. 

token Returned upon successful completion of the function call. The next 
authentication token to be sent to the target MAE. 

RESULTS 

This function returns: 

SMP_ERROR The entity has not or wrongly been initialised before. 

 The “smasc_assoc_ind” function hasn’t been called before. 

SMP_OK The secured association succeeded. A returned token with a no-null length 
has to be sent. 

SMP_CONTINUE The secured association needs to be continued. 

 

EVENTS 

 This function doesn’t send events to the SELF. 

 

6.2.2.6 Function: smasc_ release_token 

NAME 

 smasc_release_token - Releases a token allocated by a smasc_assoc function. 

SYNOPSIS  
 #include <smasc.h> 
 
 smasc_error smasc_release_token(  
  smasc_token token); 
 

DESCRIPTION 

This function is used by the Adapter to release tokens allocated by the “smasc_assoc” function. 

Parameters 

token Token to be released. 

RESULTS 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

© 1998 Trumpet Consortium  Page 135 

This function returns: 

SMP_ERROR The token points on an invalid address. 

SMP_OK The release operation succeeded. 

 

EVENTS 

 This function may not send events to the SELF. 

 

6.2.2.7 Function: smasc_ assoc_close 

NAME 

 smasc_assoc_close - Closes a secured association. 

SYNOPSIS  
 #include <smasc.h> 
 
 smasc_error smasc_assoc_close(  
  char *target); 
 

DESCRIPTION 

This function is used by the Adapter to close a secured association, with the release of : 

- the security profile variables, 

- the access control variables, 

- the SSO variables. 

Parameters 

target The target MAE’s LDAP Distinguished Name. 

 

RESULTS 

This function returns: 

SMP_ERROR No secured association with this target initiated or completed. 

SMP_OK The operation succeeded. 

 

EVENTS 

 This function doesn’t send events to the SELF. 

 

6.2.2.8 Function: smasc_ close 

NAME 

 smasc_close - Closes the use of SMASC. 

SYNOPSIS  
 #include <smasc.h> 
 
 smasc_error smasc_close(); 
 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

Page 136  © 1998 Trumpet Consortium 

DESCRIPTION 

This function is used by the Adapter to close the use of SMASC. 

This will close all the secured connections, and release SMASC intrinsic variables. 

 

Parameters 

No parameters 

 

RESULTS 

This function returns: 

SMP_OK The operation succeeded. 

6.2.2.9 Function: smasc_op_perm 

NAME 

 smasc_op_perm - .Get permission for an operation on an object 

SYNOPSIS  
 #include <smasc.h> 
 
 smasc_op_error smasc_op_perm( 
  char *target, 
  smasc_op operation, 
  char *objet); 
 

DESCRIPTION 

This function is used by the Adapter to get the permission to perform an operation on an object. 

This function according to the association profile rules verifies (if requested) the permission of the 
operation. 

The result “deny and abort operation” automatically closes the secured association. 

 

Parameters 

target The target MAE’s LDAP Distinguished Name. 

operation Type of CMIP operation to perform: 

    SMP_GET 

    SMP_SET 

    SMP_ACTION 

    SMP_CREATE 

    SMP_DELETE 

object The CMIP object’s Distinguished Name. 

 

RESULTS 

This function returns: 

 SMP_OP_ERROR   The entity has not or wrongly been initialised before. 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

© 1998 Trumpet Consortium  Page 137 

The secured association hasn’t been established before. 

      The operation value is invalid 

 SMP_OP_OK    The operation is allowed. 

 SMP_OP_DENY,   The operation is denied. 

 SMP_OP_DENY_WITHOUT_RESP  The operation is denied and no response has to be done. 

 SMP_OP_DENY_FALSE_RESP  The operation is denied and a false response has to be 
given. 

 SMP_OP_ABORT    The operation is denied and the connection has been 
closed. 

 

EVENTS 

 This function sends to the SELF the following events: 

  

Service Type  Event Type Initiator DN Target DN Additional Info 

Access Control Unauthorised 

AccessAttempt 

Initiator DN Target DN Profile=<XXX> 
Message=<Permission denied for 
operation on objectDN> 

Access Control Unauthorised 

AccessAttempt 

Initiator DN Target DN Profile=<XXX> 
Message=<Permission denied 
without response for operation on 
objectDN> 

Access Control Unauthorised 

AccessAttempt 

Initiator DN Target DN Profile=<XXX> 
Message=<Permission denied and 
false response to give for operation 
on objectDN> 

Access Control Unauthorised 

AccessAttempt 

Initiator DN Target DN Profile=<XXX> 
Message=<Permission denied  and 
association aborted for operation on 
objectDN> 

 

6.2.2.10 Function: smasc_seal 

NAME 

 smasc_seal - Seals a message. 

SYNOPSIS  
 #include <smasc.h> 
 
 smasc_op_error smasc_seal( 
  char *target, 
  smasc_token msgToken, 
  smasc_token *sgnToken, 
  smasc_sealing *type); 
 

DESCRIPTION 

This function is used by the Adapter to seal or sign a message to send. 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

Page 138  © 1998 Trumpet Consortium 

This function according to the association profile rules applies: 

- a seal operation, 

- a sign operation, 

- no operation. 

 

Parameters 

target The target MAE’s Distinguished Name. 

msgToken The input message. 

sgnToken Returned token that contains : 

  - the input message encrypted and signed in case of a seal operation, 

  - the signature of the input message in case of a sign operation. 

type Returned value that indicates the operation performed : 

  - SMP_SEAL: input message has been encrypted and signed - the 
sgnToken has to be sent, 

  - SMP_SIGN: input message has been signed - both sgnToken and 
msgToken have to be sent, 

  - SMP_CLEAR : no operation performed - the msgToken has to be sent. 

 

RESULTS 

This function returns: 

 SMP_ERROR   The secured association hasn’t been established before. 

 SMP_OK   The operation succeeded. 

 SMP_FAILURE   The encryption or signature operation failed. 

 

EVENTS 

 This function doesn’t send events to the SELF. 

 

6.2.2.11 Function: smasc_unseal 

NAME 

 smasc_unseal - .Unseal a message. 

SYNOPSIS 
 #include <smasc.h> 
 
 smasc_op_error smasc_unseal( 
  char *target, 
  smasc_token *msgToken, 
  smasc_token sgnToken); 
 

DESCRIPTION 

This function is used by the Adapter to unseal or verify a received message. 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

© 1998 Trumpet Consortium  Page 139 

This function according to the association profile rules applies : 

- a unseal operation, 

- a verify operation, 

- no operation. 

 

Parameters 

target The target MAE’s LDAP Distinguished Name. 

msgToken Output clear message token in case of unseal operation. Input clear message 
token in case of verification. 

sgnToken Input token that contains : 

- the input message encrypted in case of unsealing operation , 

- the signature of the clear message in case of verification operation, 

- null token in case of null operation.  

 

RESULTS 

This function returns: 

 SMP_ERROR   The secured association hasn’t been established before. 

 SMP_OK   The operation succeeded. 

 SMP_FAILURE   The decryption or verification operation failed. 

 

EVENTS 

 This function sends to the SELF the following events: 

  

Service Type  Event Type Initiator DN Target DN Additional Info 

Integrity 
Confidentiality 

Information 
Modification 
Detected 

Initiator DN targetDN Profile=<XXX> 
Message=<Information modification 
detected > 

Integrity 
Confidentiality 

Duplicated 
Information 
Detected 

Initiator DN targetDN Profile=<XXX> 
Message=<Duplicated information  
detected > 

Integrity 
Confidentiality 

Breach Of 
Confidentiality 
Detected 

Initiator DN targetDN Profile=<XXX> Message=<Breach of 
confidentiality detected > 

Key 
Management 

Key Expired Initiator DN targetDN Profile=<XXX> Message=<Key 
expired> 

 

6.2.3 Version, Release history 

V3.0 Complete version with the configuration of the security profiles rules. 

 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

Page 140  © 1998 Trumpet Consortium 

6.3 Security Profile Management 

6.3.1 Engineering Object Model 

The SecPolicyInfo interface as described in D9 Section 4.8 and supported by the SecPolicy object described 
in D9 Section 4.7.2 is realized by a C++ class definition with public interface: 

 
class SecurityPolicy { 
public: 
  SecurityPolicy(); 
  ~SecurityPolicy(); 
  SecurityProfile* secProfileQuery(DistName&       initiatorTitle, 
                                   ManagingRole    initiatorRole, 
                                   DistName&       responderTitle, 
                                   QoP);           //is not being used 
}; 

 

Security profiles are read from file (for format of this file cf. Section 4.3) in the SecurityPolicy constructor. 

6.3.2 Supported component interfaces 

The SecurityPolicy class does not make use of any other TRUMPET component. It supports an interface 
for the SMASC. 

Security rules for interacting with a remote peer are provided by calling the secProfileQuery method. The 
return type of secProfileQuery is SecurityProfile and the public part of this class definition is: 

 
class SecurityProfile { 
public: 
  RWCString      aCDirectory(); 
  SecProfileType secProfile(); 
}; 

 

The aCDirectory method returns a value that is the name of a directory containing access rules to be used 
by the access control component (passed on to this module by the SMASC). Four different security profiles 
are recognized and may be returned by the secProfile method (although only two are actually supported by 
TRUMPET). The profile values are given in the definition of SecProfileType: 

 
enum SecProfileType { 
  NULLP,   //supported by TRUMPET 
  MIN,     //not supported 
  BASIC,   //supported 
  ADV      //not supported 
}; 

 

The parameters to secProfileQuery are of three different types; ManagingRole, QoP and DistName .  
ManagingRole can be either agent or manager and is defined as an enumeration type: 

 
enum ManagingRole { 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

© 1998 Trumpet Consortium  Page 141 

  AGENT_ROLE, 
  MANAGER_ROLE 
}; 

 

As QoP is not in use in TRUMPET, it is defined as an enumeration type with one possible value only: 

 
enum QoP { 
  NULLQ = 0 
}; 

 

The class DistName  is used by several components in the security package. The aspects of DistName  
relevant to the interface to an object of class SecurityPolicy can be described like this: 

 
class DistName { 
public: 
  DistName(); 
  DistName(const char*); 
 
  const char* dN() const; 
   
  //equality operator overload 
  int operator== (const DistName& dn) const; 
  int operator!= (const DistName& dn) const; 
}; 

 

The secProfileQuery method throws three exceptions that all have one public method each: 

 
class UnknownInitiator          { public: char* msg(); }; 
class UnknownResponder          { public: char* msg(); }; 
class BadInitiatorResponderPair { public: char* msg(); }; 

 

It is up to the SMASC to dispose of the message returned with a delete operation on the returned value. 

The types SecurityProfile, SecProfileType, ManagingRole, QoP and all three exceptions are defined along 
with SecurityPolicy in the secpolicy.hh header file. DistName  is used more extensively in the security 
package and is defined elsewhere (but included by secpolicy.hh). 

Example 

The intended usage of the SecurityPolicy class from the SMASC can be illustrated like this: 
#include <trumpet/secpolicy.hh> 
 
SecurityPolicy   sPol; 
 
DistName         initiatorTitle("cn=bm, OU=NR,  O=TRUMPET Project"); 
DistName         responderTitle("cn=bm, OU=UCL, O=TRUMPET Project"); 
ManagingRole     initiatorRole = MANAGER; 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

Page 142  © 1998 Trumpet Consortium 

SecurityProfile* sP; 
 
try {  
  sP = sPol.secProfileQuery(initiatorTitle,  
                            initiatorRole,  
                            responderTitle, 
                            NULLQ);  
} 
catch (UnknownInitiator ui) {  
  msg = ui.msg(); cout << msg; delete msg;  
} 
catch (UnknownResponder ur) {  
  msg = ur.msg(); cout << msg; delete msg;  
} 
catch (BadInitiatorResponderPair irp) { 
  msg = irp.msg(); cout << msg; delete msg; 
} 
 
//some code to consider the attributes of *sP should 
//be inserted here, before sP is being disposed of 
 
delete sP; 
 

6.3.3 Version, Release history 

• September 1997: Initial version. 

• November 1997: New version released after first integration meeting. 

• January 1998: Code checked with purify  and new version released. 

 

6.4 Access Control 

6.4.1 Engineering Object Model 

This is  the object model for  the access control component implementation: 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

© 1998 Trumpet Consortium  Page 143 

 

Figure 50: Engineering Object Model of the Access Contro Servicel 

6.4.2 Supported component interfaces 

The access control component interfaces with the SMASC. It does not depend on other TRUMPET system 
components.  

The class  ADF  provides  the external interface of  the access control component: 

class ADF { 
public: 
 ADF (const DistName& initiator, const RWCString& domain); 
 Permission associationPermission (const DistName& target); 
   Permission operationPermission ( 
      Operation operation, 
      RWTValSlist<ac_target>& targets, 
     RWTValSlist<ac_target>& denied); 
}; 

 

METHOD 

ADF: generates a new access decision context  

 

SYNOPSIS  



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

Page 144  © 1998 Trumpet Consortium 

#include <trumpet/securityPackage/acControl/adf.hh> 
ADF (const DistName& initiator, const RWCString& domain); 
 

DESCRIPTION 

This function is used to instantiate a new access decision context. It contains the  name of the associated 
initiator and the set of access control rules to be used. 

 

ARGUMENTS 

• initiator: the application entity title of the requesting MAE (distinguished name form). 

• domain: identifies the access control domain.  

 

RESULTS 

This function may return: Allow, DenyWithResponse, DenyWithoutResponse, AbortAssociation 

 

METHOD 

associationPermission: determine access  control permission for association between given MAEs  

 

SYNOPSIS  
#include <trumpet/securityPackage/acControl/adf.hh> 
 
AccessDecision associationPermission (const DistName& target) 
 

DESCRIPTION 

This function determines the access permission of the initiator MAE to establish an association to the target 
MAE.  

 

ARGUMENTS 

• target: the application entity title of the peer MAE to connect to. This must be a distinguished  name. 

 

RESULTS 

This function may return: Allow, DenyWithResponse, DenyWithoutResponse, AbortAssociation 

 

METHOD 

operationPermission: determine access permissions to perform operation on given management  information 
objects. 

 

SYNOPSIS  
#include <trumpet/securityPackage/acControl/adf.hh> 
 

AccessDecision operationPermission ( 
  OM_sint primitive, 
  List<ac_target>& targets, 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

© 1998 Trumpet Consortium  Page 145 

  List<ac_target>& denied); 
 

DESCRIPTION 

This function is used to determine the access permissions of the initiator to perform the given operation on 
the set of  managed  objects. 

 

ARGUMENTS 

• primitive Identifies which type of operation has been requested. Possible values are: 
MP_GET_IND, MP_SET_IND, MP_ACTION_IND, MP_CREATE_IND, MP_DELETE_IND 

• targets Identifies the set of managed objects selected for the operation. The type of  
list elements is ac_target. which is defined as: 

struct ac_target { 
OM_object object; 
AccessDecision permission; 
void* link 
}; 

• object identifies a MO instance. It is an instance of OM class Base-Managed-Object-
Id.  

• permission returns the permission to perform the operation determined by the access 
decision function. 

• link  can be used by the caller to establish a link between the structure and the MO 
instance.  

 

RESULTS 

• targets: subset of objects access is granted. permission is set to Allow. 

• denied: set of object access is denied. permission is set to one of the following values: 
DenyWithResponse, DenyWithoutResponse, AbortAssociation. 

 

This function may return: Allow, DenyWithResponse, DenyWithoutResponse, AbortAssociation 

 

6.4.3 Version, Release history 

v1.0  Initial Release   Nov 97 

 

6.5 Security Administration Tool 

6.5.1 Engineering Object Model 

The Security Administration Tool is divided into a server and a client. The server is doing the operations 
such as reading the configuration file, read/write or CMIP requests. The client is an applet  (a GUI accessible 
in a browser) and is collection of windows to help the user access easily to the audit and alarm management 
(event filtering, displaying and logging) as well as to the access control and security profile management. 

6.5.1.1 The Security Administration Server 

The Security Administration Server performs all the operations that cannot be performed by the client which 
is an applet and cannot make read/write operations and use native code. 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

Page 146  © 1998 Trumpet Consortium 

The AA manager server uses a C library which interface  with XOM/XMP API for the creation and deletion 
of EFD, the reception of events, the read/write in a log file with XOM format. The AA manager server is 
written in Java and uses natives to access the C library. 

The Server communicates with its client through RMI (Remote Management Interface) of Java. The 
exchanged messages are: 

• creation or deletion of EFD, 

• confirmation of creation or deletion of EFD, 

• received alarms or non-security events, 

• logged alarms or non-security events. 

6.5.1.2 The Security Administration Client 

The Security Administration Client is a GUI that is composed of several windows. The main goal of the GUI 
is to allow the user not necessarily familiar with security management concept to be able to access the 
management functions. This is the reason why the GUI should be user-friendly not only as to how the 
information is displayed, but also in the manner in which the user participates in the management process. 
The GUI provides the following elements: 

• Top Level Window; 

This window allows to start the management session. The administrator can select the security service in 
the administration menu: Security Profile Management, Access Control or Audit. The Security Status 
menu displays the number of security alarms for each severity level. Two buttons allow to display more 
information about the alarms and management events. 

• EFD Management; 

The window allows the management of the EFD. A scrolled list allows the selection of a host. The create 
and delete buttons allow the creation on the selected host of an EFD and the deletion on the selected 
host of the selected EFD. A list displays all the EFD that have been created for a selected host. 

• Alarm Viewer; 

This window shows the collected events. For the alarms the severity is displayed and for the non 
security events, the severity is empty. 

• Log Management. 

This window enables the display of the logged events with the Edit button and the deletion of the log 
with the button Delete. 

The client also contains a Java thread which is responsible for receiving events from the server: either 
alarms, management events or EFD creation or deletion confirmation. 

6.5.2 Supported component interfaces 

6.5.2.1 Interface between the Java AA Manager Server and the SELF 

The communications interface between the Java AA Manager Server in SELF is the same as one, which is 
used between the Motif AA Manager and the SELF. It is described in Section 6.7.2. 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

© 1998 Trumpet Consortium  Page 147 

6.5.2.2 Interface between the Java AA Manager Client  and Server 
public interface RemoteManager extends java.rmi.Remote { 
 

public Vector readHosts () throws java.rmi.RemoteException; 
public boolean createEfd (String hostname)  

throws java.rmi.RemoteException; 
public CMISEvent receiveEvent () throws java.rmi.RemoteException; 
public void deleteEfd (String hostname, int efd) 

throws java.rmi.RemoteException; 
public CMISEvent readLog (int fd) throws java.rmi.RemoteException; 
public int beginReadLog () throws java.rmi.RemoteException ; 
public void endReadLog (int fd) throws java.rmi.RemoteException; 
public boolean deleteLog () throws java.rmi.RemoteException; 
public void print () throws java.rmi.RemoteException; 

} 

 

6.5.2.2.1 Method: readHosts  

SYNOPSIS  
public Vector readHosts () throws java.rmi.RemoteException; 

DESRIPTION 

This method returns a vector which is a list of the possible hosts where EFDs can be created. 

6.5.2.2.2 Method: createEfd 

SYNOPSIS  
public boolean createEfd (String hostname)  

throws java.rmi.RemoteException; 

DESRIPTION 

This method creates an EFD on the given machine. The returned boolean indicates whether the creation has 
succeeded or not. 

6.5.2.2.3 Method: receiveEvent 

SYNOPSIS  
public CMISEvent receiveEvent () throws java.rmi.RemoteException; 

DESRIPTION 

This method waits until an event is received and returned this event. 

6.5.2.2.4 Method: deleteEfd 

SYNOPSIS  
public void deleteEfd (String hostname, int efd) 

throws java.rmi.RemoteException; 

DESRIPTION 

This method deletes an EFD identified by its number and machine. 

6.5.2.2.5 Method: readLog 

SYNOPSIS  
public CMISEvent readLog (int fd) throws java.rmi.RemoteException; 

DESRIPTION 

This method reads and returns one event in the log file identified by its file descriptor. 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

Page 148  © 1998 Trumpet Consortium 

6.5.2.2.6 Method: beginReadLog 

SYNOPSIS  
public int beginReadLog () throws java.rmi.RemoteException ; 

DESRIPTION 

This method opens the log file and returns this file descriptor. 

6.5.2.2.7 Method: endReadLog 

SYNOPSIS  
public void endReadLog (int fd) throws java.rmi.RemoteException; 

DESRIPTION 

This method closes the log file identified by its file descriptor. 

6.5.2.2.8 Method: deleteLog 

SYNOPSIS  
public boolean deleteLog () throws java.rmi.RemoteException; 

DESRIPTION 

This method deletes the log file identified by its file descriptor. 

6.5.2.2.9 Method: print 

SYNOPSIS  
public void print () throws java.rmi.RemoteException; 

DESRIPTION 

This method prints the current status of the server. 

6.5.3 Version, Release history, Known bugs 

An exception from Symantec Coffee is raised when the Alarm Viewer is edited. 

 

6.6 Security Support Object 

6.6.1 Engineering Object Model 

The SSO is a set of API to provide security services. It interfaces with an commercial  (Secude v5.1c) GSS 
library. 

SECUDE (formerly SecuDE - Security Development Environment) is a security toolkit which incorporates 
well known and established symmetric and public-key cryptography. It offers a library of security APIs, and 
also tools to manage keys and certificates. These both aspects are closely linked, and the result of the GSS 
API hardly depends on the key management. 

This object provides convenient security APIs, especially adapted to the Trumpet environment. 

 

6.6.2 Supported component interfaces 

The trumpet interface offers the following functions to the SMASC: 

6.6.2.1 Functions: server_acquire_creds & client_ acquire_creds  

FUNCTION 

server_acquire_creds  

client_ acquire_creds 

 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

© 1998 Trumpet Consortium  Page 149 

SYNOPSIS  
Int server_acquire_creds(char *service_name, gss_cred_id_t 
*server_creds) 
Int client_acquire_creds(char *service_name, gss_cred_id_t 
*server_creds) 
 

DESCRIPTION 

Imports service name and acquires credentials for it. The service name is imported with gss_import_name, 
and service credentials are acquired with gss_acquire_cred.  If either operation fails, an error message is 
displayed and an error is returned. 

 

ARGUMENTS 

• service_name The ASCII service name. (Input) 

• server_creds The GSS-API service credentials. (Output) 

 

RESULTS 

SSO_FAILURE  Either service name importation or credentials acquisition failed. 

SSO_SUCCESS  Both operations succeeded. 

 

6.6.2.2 Function: client_establish_context 

FUNCTION 

client_establish_context  

 

SYNOPSIS  
int client_establish_context(   
   int            req_flag, 
   gss_cred_id_t  client_creds,  
    char         * service_name, 
   gss_ctx_id_t * gss_context, 
   gss_buffer_t   recv_tok, 
   gss_buffer_t   send_tok)  

 

DESCRIPTION 

Establishes a GSS-API context with a specified target service and returns the context handle. The target 
service name is imported as a GSS-API name and a GSS-API context is established with the corresponding 
service. The default GSS-API mechanism is used, and specified authentication options are requested. If 
successful, the context handle is returned. If unsuccessful an error code is returned. Else the process has to 
be continued. 

 

ARGUMENTS 

• Req_flag  The specified options for the authentication. (input) 

In Trumpet we use: 

- SSO_BASIC_FLAG for unilateral authentication with replay and out of sequence 
detection, 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

Page 150  © 1998 Trumpet Consortium 

- SSO_ADV_FLAG to add mutual authentication. 

• client_creds  Client credentials, from gss_acquire_cred (input) 

• service_name The ASCII target service name. (input) 

• gss_context   The GSS-API context to establish. (output) 

• recv_tok   The received token. (Input) 

Has to be set to = GSS_C_NO_BUFFER for the first call. 

• send_tok   The token to send. (Output) 

A non-null token has to be sent even if SSO_SUCCESS is returned. 

RESULTS 

SSO_SUCCESS  The authentication succeeded and the context is established. 

SSO_CONTINUE The authentication process has to be continued. 

SSO_FAILURE  The authentication process failed for an unspecified reason. 

SSO_EXPIRED  The authentication failed: the target key validity date has expired. 

 

6.6.2.3 Function: server_establish_context 

FUNCTION 

server_establish_context  

 

SYNOPSIS  
int server_establish_context( gss_cred_id_t server_creds, 
    gss_ctx_id_t *context,  
    gss_buffer_t client_name, 
    gss_buffer_desc recv_tok, 
    gss_buffer_desc send_tok) 

 

DESCRIPTION 

Establishes a GSS-API context as a specified service with an incoming client, and returns the context handle 
and associated client name. Any valid client request is accepted.  If a context is established, its handle is 
returned in context and the client name is returned in client_name and SUCCESS is returned. If unsuccessful 
an error code is returned. Else the process has to be continued. 

 

ARGUMENTS 

• server_creds Server credentials, from gss_acquire_cred. (Input) 

• context   The GSS-API context to establish. (Output) 

• client_name  The client's ASCII name. (Output) 

• recv_tok   The received token. (Input) 

• send_tok   The token to send. (Output) 

A non-null token has to be sent even if SSO_SUCCESS is returned. 

RESULTS 

SSO_SUCCESS  The authentication succeeded and the context is established. 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

© 1998 Trumpet Consortium  Page 151 

SSO_CONTINUE The authentication process has to be continued. 

SSO_FAILURE  The authentication process failed for an unspecified reason. 

SSO_EXPIRED  The authentication failed: the target key validity date has expired. 

 

6.6.2.4 Function: trumpet_release_buffer 

FUNCTION 

trumpet_release_buffer 

SYNOPSIS  
void trumpet_release_buffer(gss_buffer_desc buffer) 

 

DESCRIPTION 

Release a buffer allocated by a GSS-API function. This concerns the ouput gss_buffer_t buffers, for 
examples: tokens to send, or the service names. 

 

ARGUMENTS 

• buffer  Buffer to release (Input) 

 

RESULTS 

None 

 

6.6.2.5 Function: trumpet_delete_sec_ctx 

FUNCTION 

trumpet_delete_sec_ctx 

 

SYNOPSIS  
int trumpet_delete_sec_ctx(gss_ctx_id_t * ctx) 
 

DESCRIPTION 

Deletes an established GSS-API context of security. This operation needs to be performed by the client and 
the server. 

 

ARGUMENTS 

• ctx   Context to delete (Input) 

 

RESULTS 

SSO_SUCCESS  The operation succeeded. 

SSO_FAILURE  The operation failed. 

 

6.6.2.6 Function: trumpet_release_cred 

FUNCTION 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

Page 152  © 1998 Trumpet Consortium 

trumpet_release_cred 

 

SYNOPSIS  
int trumpet_release_cred(gss_cred_id_t * cred) 

 

DESCRIPTION 

Releases the acquired credentials. This operation needs to be performed by the client and the server. 

ARGUMENTS 

• cred  Credentials to release (Input) 

 

RESULTS 

SSO_SUCCESS  The operation succeeded. 

SSO_FAILURE  The operation failed. 

 

6.6.2.7 Function: trumpet_seal 

FUNCTION 

trumpet_seal 

 

SYNOPSIS  
int trumpet_seal(gss_ctx_id_t context, 
   gss_buffer_t in_buf,  
   gss_buffer_t out_buf) 

 

DESCRIPTION 

Encrypts and signs the input buffer, according to the established context of security. If successful the result 
of encryption is returned in the output buffer. Otherwise an error is returned.  

 

ARGUMENTS 

• context   The established GSS-API context (Input) 

• in_buf  The buffer to encrypt. (Input) 

• out_buf  The result of encryption. (Output) 

 

RESULTS 

SSO_SUCCESS  The operation succeeded. 

SSO_FAILURE  The operation failed. 

 

6.6.2.8 Function: trumpet_sign 

FUNCTION 

trumpet_sign 

 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

© 1998 Trumpet Consortium  Page 153 

SYNOPSIS  
int trumpet_sign(gss_ctx_id_t context, 
   gss_buffer_t msg_buf,  
   gss_buffer_t sgn_buf) 

 

DESCRIPTION 

Signs the input buffer, according to the established context of security. If successful the signature is 
returned in the output buffer. Otherwise an error is returned.  

 

ARGUMENTS 

• context   The established GSS-API context (Input) 

• msg_buf  The buffer to sign. (Input) 

• sgn_buf  The result of signature. (Output) 

 

RESULTS 

SSO_SUCCESS  The operation succeeded. 

SSO_FAILURE  The operation failed. 

 

6.6.2.9 Function: trumpet_unseal 

FUNCTION 

trumpet_unseal 

 

SYNOPSIS  
int trumpet_unseal(gss_ctx_id_t context, 
   gss_buffer_t in_buf,  
   gss_buffer_t out_buf) 

 

DESCRIPTION 

Decrypts and verifies the signature of the input buffer, according to the established context of security. If 
successful the result is returned in the output buffer. Otherwise an error is returned.  

 

ARGUMENTS 

• context   The established GSS-API context (Input) 

• in_buf  The buffer to decrypt. (Input) 

• out_buf  The result of decryption. (Output) 

 

RESULTS 

SSO_SUCCESS  The operation succeeded. 

SSO_IMD  An information modification has been detected. 

SSO_DUPLICATE A duplication of token has been detected. 

SSO_BOF  A breach of confidentiality has been detected. 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

Page 154  © 1998 Trumpet Consortium 

SSO_EXPIRED  The operation failed: the target key validity date has expired. 

SSO_FAILURE  The operation failed for an unspecified reason. 

 

6.6.2.10 Function: verify 

FUNCTION 

trumpet_ verify 

 

SYNOPSIS  
int trumpet_verify(gss_ctx_id_t context, 
     gss_buffer_t msg_buf,  
     gss_buffer_t sgn_buf) 

 

DESCRIPTION 

Verifies the signature of the message buffer, according to the established context of security. The result of 
the verification  is returned.  

 

ARGUMENTS 

• context   The established GSS-API context (Input) 

• msg_buf  The buffer to sign. (Input) 

• sgn_buf  The result of signature. (Input) 

 

RESULTS 

SSO_SUCCESS  The operation succeeded. 

SSO_IMD  An information modification has been detected. 

SSO_DUPLICATE A duplication of token has been detected. 

SSO_BOF  A breach of confidentiality has been detected. 

SSO_EXPIRED  The operation failed: the target key validity date has expired. 

SSO_FAILURE  The operation failed for an unspecified reason. 

 

6.6.3 Version, Release history, Known bugs 

6.6.3.1 Version / release history 

v2.0 Complete Version  May 98 

6.6.3.2 Known bugs 

With Secude v5.1c a secured association with an outdated certificate generates a generic authentication 
failure error instead of a key expired error. 

 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

© 1998 Trumpet Consortium  Page 155 

6.7 Audit and Alarm 

6.7.1 Engineering Object Model 

6.7.1.1 Introduction 

The implementation of the audit management is described in this section with emphasis on the Graphical 
User Interface, the Event Forwarding Discriminator management and the security related event collecting 
and displaying. In the Graphical User Interface, a collection of user friendly mask windows are defined and 
realised to help the user to access easily to the event forwarding discriminator construction and the alarm 
reporting function. The security related event management is implemented using the XMP API.  

The implementation work is composed of: 

• The basic audit management function library 

• The top level GUI 

• The GUI for alarm viewing 

• The GUI for EFD management 

• The GUI for log management 

• The graphical editor for DiscriminatorConstruct 

6.7.1.2 Implementation Architecture 

The audit management is performed by the security alarm management application and the audit trail 
management application. 

These management applications collect security-related events from a set of known agents according to the 
conditions defined in the Event Forwarding Discriminators.  The alarm manager allows these events to be 
displayed in human readable format, as the audit trail manager saves them into a log for further analysis. 

The audit management is implemented in one process. 

The GUI provides: 

• an agent viewer to show the location and the state of the agents  

• an agent controller to manage the EFD in that agent (EFD creation, deletion, etc.) 

• an alarm viewer to display collected security alarms  

• an event log browser 

The Security Alarm Manager implements the following management functions: 

• event forwarding discriminator management 

• security alarm collection (the alarm detection is performed by the agent side) 

• alarm reporting 

The Audit Trail Manager logs not only security alarms (SecurityServiceAndMechanism-
Violation:  a subset of security-related events) but also ServiceReport.  These events are very 
valuable resources for further security audit analysis. 

6.7.1.3 GUI 

This section presents the design of the GUI for managing audit functions, including Event Forwarding 
Discriminators and security-related event collecting and displaying.  The corresponding sponsor 
component, accepting messages from the audit management application and mapping them to real resources 
mechanisms is not discussed here. 

In the GUI a collection of user-friendly mask windows are defined and realised to help the user access easily 
the event forwarding discriminator construction and the alarm reporting function.  The security-related 
event management is implemented using the XMP API. 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

Page 156  © 1998 Trumpet Consortium 

The main goal of the GUI is to allow the user not necessarily familiar with the security management concept 
and the OSI model to be able to access the management functions.  This is the reason for which the GUI 
should be user-friendly not only as to how the information is displayed, but also in the manner in which the 
user participates in the management process. 

Top-Level Window 

This window allows to start the TRUMPET management session. The administrator can select the security 
services to select in the Administration menu: currently only the audit management is implemented; 
potentially, management of the security policy, management of the authentication and access control 
services and key management could be added. The Security Status menu displays the number of security 
alarms for each severity level. Two buttons allow to display mo re information about the alarms. 

Agent Configuration Window 

This window allows to see each agent configuration from which security alarms will be collected. In its menu 
bar, the administrator can select an audit manager configuration containing some agent bitmaps which he 
can move on the trials bit map and perform actions on them., see agent specifications ... 

Agent-EFD Control Window 

This window gives some useful information on the selected agent and controls the EFD on it.  The agent 
control panel shows the name and the current co-ordinates of the agent.  The user can give the current 
operational state of the agent (present, running, locked, etc.).  Using the EFD panel, the user can create a 
new EFD instance in the selected agent.  A scroll list shows the EFDs currently associated with the agent; 
by choosing one of the EFD identifier from the list, the user may delete, edit or get help from it.  When the 
user clicks on the Modify or Create button, the EFD construction mask window is displayed. 

EFD Construction Mask Window 

This window contains all the attributes of the EFD class.  The security administrator can specify the 
appropriate value to build a new EFD or edit an existing EFD. By clicking on the corresponding button, the 
administrator is displayed a specific window to fill all the EFD attributes fields: Discriminator Construct, Start 
Time, Stop Time, Intervals of Days, Week Mask, Destination, Backup Destination List, Active Destination, 
Administrative State, Operational State, Availability Status, Confirmed Mode.  

Filters Editor Window 

This window allows to construct a discriminator graphically. On the drawing area, the administrator has to 
click on a rectangle bitmap and to control it by using the mouse menu button. 

Control Window for Managing Logs 

This  windows is used for log management. The existing logs are displayed as icons with log names below. 
The security auditor can select a log with the mouse to display the contents of the log or delete the log. He 
can create a new log (Log Creation Window). By double-clicking on the log icon, the administrator can 
display the log attributes. 

Log Creation Window 

This window allows the creation of a new log. A default log can be created or the administrator can create a 
customised log by specifying – using the same windows as for the EFDs – the discriminator construct, the 
start time, the stop time, the intervals of days, the week mask. He can modify the operational and 
administrative state of the log. 

Log Attributes Display Window 

The administrator can display and modify the attributes of the selected log. 

Alarm Viewer Window 

This window shows the collected security alarms.  Only 10 alarms can be displayed simultaneously.  The 
alarm buffer size is limited.  The older alarms will be discarded when the buffer is full. 

6.7.1.4 Basic audit management function library 

This library provides some basic functions to: 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

© 1998 Trumpet Consortium  Page 157 

• initialise the XMP library 

• create OpenView kernel EFD 

• create, delete, enable and disable EFD in the specified agent 

• wait an event (with time out) 

This library is written upon the XMP interface. 

6.7.1.5 Interprocess Communication Interface Library 

The Interprocess Communication Interface Library defines a specific protocol and a set of service functions 
to allow one or more management application processes to communicate with the GUI process. The protocol 
is based on message passing mechanisms. 

Principle 

Management applications can not be implemented using event driven scheme. They have to perform a loop 
to wait for the CMIP messages and GUI commands. The X11 main loop does the same thing. It is possible to 
add into X11 main loop the CMIP messages . 

The GUI implemented in X11 and Motif incorporates the messages from management processes 
(XtAppAddInput). The XMP based applications will include the GUI command handler into their main 
loop. 

The GUI is responsible to load and shutdown a XMP process. The GUI can also control the XMP process 
execution, for example pause and resume the alarm collection. 

 

6.7.2 Supported component interfaces 

• The manager audit and alarms communicates with the agent ovead of the HP OpenView 4.21 platform 
through XMP. The GDMO model used for XOM objects is the GDMO X721 (ems.mib) of the platform. 
The manager manages object of class HPEventForwardingDiscriminator. 

• The manager exchanges with SELF agent with XMP: Event Report which field Event Info is of class 
SecurityAlarmInfo (in ems.mib) or ServiceReport (GDMO X740). 

 

Contents of the Event Report  

 

Name of the attribute (GDMO) Contents 

Managed Object Class  Service which raise the event (integer 
converted in oid) 

Managed Object Instance 

(in the attribute value of the first 
ava) 

Instance of the service (integer) 

Event Time actual time (generalised time) 

Event Type oid of the notification 

Event Info Security Alarm Info or Security Audit Info 

 

Contents of the Security Alarm Info 

 

Name of the attribute (GDMO) Contents 

Security Alarm Cause  oid of the security alarm cause 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

Page 158  © 1998 Trumpet Consortium 

Security Alarm Severity integer 

Security Alarm Detector empty 

Service User (attribute Detail) oid of the entity which caused the raising of 
the alarm 

Service Provider (attribute Detail) oid of the entity which has been «attacked » 

 

Contents of the Security Audit Info (Service Report) 

 

Name of the attribute (GDMO) Contents 

Service Report Cause  oid of the service report cause 

Additional Text  oid of the entity which caused the raising of 
the report 

Additional Information oid of the entity which has been «attacked » 

 

6.7.3 Version, Release history, Known bugs 

6.7.3.1 Version / release history 

Actually, the agent of the HP OpenView platform does not implement the behaviour of all the packages of 
X721 GDMO. The Duration package is not implemented in the ovead agent,  the GUI implements the 
Duration package (week mask, intervals of day, ...), but since it is not implemented in the agent, setting these 
attributes in the manager will have no effect on the behaviour. 

 

6.8 SELF 

6.8.1 Engineering Object Model 

There is a number of XOM objects used to implement the audit agent. These are as follows: 

• feature_list (MP_feature): negotiate the features of the platform environment where the agent runs. 

• attributeId , ava , ds_rdn , ds_dn  (OM_descriptor): they are used to identify an instance of a security 
service. 

• bmoi: (OM_descriptor): is used to identify a managed object class which is a class of a service. An 
integer is used converted to an OID. 

• bmoc: (OM_descriptor): is used to identify an instance of a managed object class i.e. an instance of a 
service using an integer. 

• eType: (OM_descriptor): it contains the OID of the notification. 

• sUser: (OM_descriptor): DN of the initiator MAE. 

• sProvider: (OM_descriptor): DN of the target MAE. 

• addInfo: (OM_descriptor): OID of the target MAE in case of emmision of a service report notification. 

• addText: (OM_descriptor): OID of the initiator MAE in case of emmision of a service report notification. 

• sACause: (OM_descriptor): OID of the security alarm cause. 

• sASeverity: (OM_descriptor): Severity of the event (MAJOR / MINOR / WARNING / CRITICAL / 
INTERMEDIATE ) 

• srCause: (OM_descriptor): OID of the service report cause. 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

© 1998 Trumpet Consortium  Page 159 

• saInfo: (OM_descriptor): Security Alarm Info in case of a service report notification. 

• setEventReport: (OM_descriptor) contains a CMIP event report. 

• eInfo - Security Alarm Info. 

 

6.8.2 Supported component interfaces 

6.8.2.1 Introduction 

In the following figure the SELF interfaces are shown. The SELF is  the agent part of the security audit and 
alarm architecture. It accepts  notifications from the SMASC about security events that happened in the 
environment. These notifications are communicated as string through a TCP/IP socket interface. The agent 
transforms these notifications into CMIP event reports and sends them to the security audit and alarm 
manager in order to be displayed on the operator’s screen. The interface between the agent and the manager 
is a CMIP interface.  

EFD
Notifications Forward

Agent 

Logs

M
an

ag
er

D
ISPL

A
Y

SMASC
Socket interface

CMIP

 

Figure 51: SELF Interfaces 

 

6.8.2.2 Interface between the SELF and the SMASC  
The SMASC and the SELF communicate through TCP/IP sockets . There is a number of security events that 
the SMASC sends to the agent and these are listed below. 

 
/* Security events as defined in D9 + "NULL string event" in order to 
use the serviceReport Notification */  
#define AUTH_F "authenticationFailure" 
#define KEY_EXP "keyExpired" 
#define IMD "informationModificationDetected" 
#define DI "duplicateInformation" 
#define BOC "breachOfConfidentiality" 
#define UAA "unauthorizedAccessAttempt" 
#define OOS "outOfService" 
#define HAA "outOfHoursActivity" 
#define UR "unspecifiedReason" 
#define NO_EVENT "NULL" 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

Page 160  © 1998 Trumpet Consortium 

 

In what follows the structure of the notification information received by the agent process is described: 

 

FUNCTION open_AA_connection  

SYNOPSIS 
void open_AA_connection (char *hostname, int Port) 

DESCRIPTION 

This function is used to open a connection with the agent process. 

ARGUMENTS 

• hostname defines the hot where the SELF runs, the IP address of the host can also be given. 

• Port is the listening port of the SELF agent. 

 

FUNCTION send_info 

SYNOPSIS 
void send_info( enum Service_Type service, int service_id, char *EType, 
char *Suser, char *Sprovider, char *Info_msg) 

DESCRIPTION 

This is the function used to send the notification.  

ARGUMENTS 

• service defines a service chosen from the available set of services defined in  section 5.9 
{Auth,KeyMgmnt,Int_Conf,AC,CPN_Ser,Cust_Server_Ser,Xuser_VASP_Ser,Xuser_PNO_Ser}; 

• service_id  is used to identify the part  of the system, a security or management event has been 
produced from. 

• EType  defines the event from the list of available events described above. 

• Suser  represents the DN of the initiator MAE. 

• Sprovider  represents the DN of the target MAE. 

• Info_msg is used to convey information relevant to a security or management event 

 

FUNCTION send_AA_notif 

SYNOPSIS 
int send_AA_notif (char *str) 

DESCRIPTION 

This function sends actually the notification by filling in the notification string with other information, which 
is the library version and the instance of the service. 

 

FUNCTION close_AA_connection 

SYNOPSIS 
void close_AA_connection () 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

© 1998 Trumpet Consortium  Page 161 

DESCRIPTION 

This function closes the connection to the agent process and should always be called after sending the 
notification. 

 

6.8.2.3 Interface between the SELF and the Audit Manager 

This interface is accomplished though a number of XOM objects (all of type OM_descriptor) since the 
communication between the agent and the manager is done using the CMIP protocol: 

• setEventReport: this is the XOM object representing the CMIP event report sent to the manager. It 
follows the X736, X740 standards and the type of information set includes the Managed Object Class, 
the Managed Object Instance the Event Type the Event Time and the Event Info. The Event Info is 
realised by the following two XOM objects. 

• eInfo: this object is used for a security related event. 

• saInfo: this object is used when a service report notification is sent. 

In here we describe the format of the CMIS event reports sent to the audit  and alarm manager by the SELF. 

 

Contents of the Event Report 

 

Name of the attribute (GDMO) Contents 

Managed Object Class  Service which raise the event (integer 
converted in oid) 

Managed Object Instance 

(in the attribute value of the first 
ava) 

service identifier 

Event Time actual time (generalized time) 

Event Type oid of the notification 

Event Info Security Alarm Info or Security Audit Info 

 

Contents of the Security Alarm Info 

 

Name of the attribute (GDMO) Contents 

Security Alarm Cause  oid of the security alarm cause 

Security Alarm Severity integer 

Security Alarm Detector empty 

Service User (attribute Detail) DN of the entity which caused the raising of 
the alarm + trace information 

Service Provider (attribute Detail) DN of the entity which has been «attacked » 

 

Contents of the Security Audit Info (Service Report Notification) 

 

Name of the attribute (GDMO) Contents 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

Page 162  © 1998 Trumpet Consortium 

Service Report Cause  oid of the service report cause 

Additional Text  DNof the entity which caused the raising of 
the report + trace information 

Additional Information DN of the target entity 

 

Always a management event will generate a ServiceReport Notification. 

 

6.8.3 Version, Release history 

The latest version is version 2.0 , July 1998. 

 

 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

© 1998 Trumpet Consortium  Page 163 

7 REFERENCES 
[Gos95] The Java Language Environment, A White Paper, James Gosling, Henry 

McGilton, Sun Microsystems, October 1995. 
[Kern83] The ANSI C Programming Language, Brian Kernighan and Dennis Ritchie, 

Prentice Hall, 1983. 
[MISA-D3-A1] Initial MISA High Level Design, Annex A1: Xuser Interface Definition, ACTS 

AC080 MISA Deliverable 3, Annex A1, September 1996 
[MISA-D3-A2] Initial MISA High Level Design, Annex A2: Path Provisioning Ensemble, ACTS 

AC080 MISA Deliverable 3, Annex A2, September 1996 
[Orbix96a] Orbix 2 Programming Guide, IONA Technologies, October 1996. 
[Orbix96b] The Orbix Architecture, IONA Technologies, November 1996. 
[Orfali97] Client/Server Programming with JAVA and CORBA, Robert Orfali and Dan 

Harkey, John Wiley & Sons, Inc., ISBN 0-471-16351-1, USA, 1997. 
[OMG] http://www.omg.org 
[OMG-970301] IDL/Java Language Mapping, Joint Revised Submission, OMG TC Document 

orbos/97-03-01, 19/3/1997 
[RFC 1508] RFC 1508, “Generic Security Service Application Program Interface”, September 

1993 
[Str86] The C++ Programming Language, Bjarne Stroustrup, Addison Wesley, 1986 
[TRUMPET-D6] ACTS AC112 Trumpet Deliverable 6, NIL-Security Prototype Report, February 

1997. 
[TRUMPET-D8] ACTS AC112 TRUMPET Deliverable 8, "Detailed Component and Scenario 

Design ", June. 1997 
[TRUMPET-D9] ACTS AC112 TRUMPET Deliverable 9, " System Component Specification ", 

October. 1997 
[TRUMPET-D11B] ACTS AC112 TRUMPET Deliverable 11B, "Implementation (Prototype)", 

January. 1998 
[UML] Unified Modelling Language, RATIONAL Software Corporation, 

http://www.rational.com/  
[XOM] X/Open Company Limited & X.400 API Association, XOM, OSI-Abstract-Data 

Manipulation API, CAE Specification, 1991 
 



AC112/GMD/WP3/DS/I/011/C  Implementation (Final Demonstration) 

Page 164  © 1998 Trumpet Consortium 

8 ACRONYMS 
 
API Application Programmer’s Interface 
ATM Asynchronous Transfer Mode 
BSP Binary Space Partition 
CA Certification Authority 
CIM Common Information Model 
CIS Communications Interface System 
CMIP Common Management Information 

Protocol 
CMIS Common Management Information Service 
CMISE CMIS Element 
CORB
A 

Common Object Request Broker 
Architecture 

CPN Customer Premises Network 
CRL Certificate Revocation List 
DII Dynamic Invocation Interface 
DN Distinguished Name 
DSI Dynamic Skeleton Interface 
EFD Event Forwarding Discriminator 
EML Element Management Layer 
EMS Event Management System 
GBC Global Broadband Connection 
GBCM Global Broadband Connectivity 

Management 
GDMO Guidelines for the Definition of Managed 

Objects 
GUI Graphical User Interface 
HMM Hyper-Media Management 
HPOV Hewlert-Packard Open View 
HTML Hyper-Text Mark-up Language 
HTTP Hyper-Text Transfer Protocol 
IBC Integrated Broadband Connection 
IDL Interface Definition Language 
IIOP Internet Inter-ORB Protocol 
IP Internet Protocol 
JDBC Java DataBase Connectivity 
JDK Java Development Kit  
JLDAP Java LDAP 
JMAPI Java Management API 
LAN  Local Area Network 
LDAP Lite  Weight Directory Access Protocol 
LIF Local Interface 
MIB Management Information Base 
MO Managed Object 
MOS Managed Object Server 
NEL Network Element Layer 
NEV Network Element View 
NL Network Layer 
NML Network Management Layer 
NMS Network Management System 
NV Network View 
ODP Open Distributed Processing 
OMG Object Management Group 
ONP Open Network Provision 
ORB Object Request Broker 

OS Operation System 
OSF Operation System Function 
OSI Open Systems Interconnection 
PC Personal Computer 
PNO Public Network Operator 
PTT Postal, Telegraph and Telephone 
QAF Q Adapter Function 
QATM ATM QAF 
QoS Quality of Service 
RDN Relative Distinguished Name 
RMI Remote Method Invocation 
SAC Service Access Control 
SDH Synchronous Digital Hierarchy 
SII Static Invocation Interface 
SL Service Layer 
SME Small and Medium Enterprise (Market) 
SNC Subnetwork Connection (as in releaseSNC, 

etc.) 
SNMP Simple Network Management Protocol 
SOHO Small Office Home Office (Market) 
SSI Static Skeleton Interface 
SSL Secure Sockets Layer 
TCP Transmission Control Protocol 
TMN Telecommunications Management Network 
TTP Trusted Third Party 
UML Unified Modelling Language 
URL Universal Resource Locator 
VASP Value Added Service Provider 
VP Virtual Path 
VPI Virtual Path Identifier 
WAN  Wide Area Network 
WPx Work Package Number x 
XMP X/Open Management Protocols API 
XOM X/Open OSI-Abstract-Data Manipulation 

API 
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  
  



Implementation (Final Demonstration)  AC112/GMD/WP3/DS/I/011/C 

Page 165  © 1998 Trumpet Consortium 

  
  
  
  
  
  
  
  
  
  
  
  

 


