AN UPSCALING METHOD FOR ONE-PHASE FLOW IN
HETEROGENEOUS RESERVOIRS; A WEIGHTED OUTPUT LEAST
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Abstract. In this paper we study the problem of determining the effective permeability on
a coarse scale level of problems with strongly varying and discontinuous coefficients defined on a
fine scale. The upscaled permeability is defined as the solution of an optimization problem, where
the difference between the fine scale and the coarse scale velocity field is minimized. We show that
it is not necessary to solve the fine scale pressure equation in order to minimize the associated
cost-functional. Furthermore, we derive a simple technique for computing the derivatives of the cost-
functional needed in the fix-point iteration used to compute the optimal permeability on the coarse

mesh. Finally, the method is illustrated by several analytical examples and numerical experiments.
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1. Introduction. The data describing the basic geophysical properties of a
reservoir are important input to any method for simulating the production of hy-
drocarbons. These data, usually generated by geostatistical methods, are often given
on a very fine scale. This fine scale model cannot be used directly in a reservoir
simulator as the associated degrees of freedom is out of scope for todays computers.
Thus the data have to be upscaled to a coarser representation before they are used
in a simulator, cf. [6, 9, 11, 12, 17, 18, 19, 21, 29].

The purpose of the present paper is to introduce a new technique for assigning
permeabilities to a coarse mesh based on a fine mesh representation. Our approach
is to minimize, in proper norms, the error introduced in the velocity field by the up-
scaling process. More precisely, we suggest a scheme for computing the best upscaled
permeability field in the sense that the difference between the fine scale velocity and
the coarse scale velocity is minimized. This approach is reasonable since the velocity
field is the main input to the flow simulator. The main technical feature of our ap-
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proach is that we avoid solving the pressure equation on the fine scale. Our technique
is developed for one-phase flow in heterogeneous reservoirs. However, it should be
mentioned that the technique also is applicable to multi-phase problems and that this
sort of problem arise in a series of mechanical, chemical and several other engineering

problems.

The problem of computing the permeability values for the coarse scale grid-blocks
has been of interest for many years. The simplest methods are defined in terms of some
average of the fine scale data. Typically, the coarse scale permeabilities are computed
as the arithmetic, geometric or harmonic mean of the fine scale permeabilities, cf. e.g.
Dale, Ekrann and Holden [25], Deutsch [9] or references given therein. These methods
are computationally efficient, but inaccurate for problems with strong permeability

variations.

A more accurate, though computationally more expensive, method is based on
solving the flow equation on each coarse grid-block. A no flow boundary condition is
applied to all faces of the block except for two opposite faces where constant Dirichlet
boundary conditions are applied. The coarse grid-block permeability is then deter-
mined such that the total flow across the block is preserved, see Durlefski [12], Warren

and Price [29] and Desbarats [11].

Furthermore, King [21] has suggested a renormalization procedure and Griebel
and Knapek [17] use a multigrid technique for upscaling. Under the assumption
of periodic structures, homogenization methods can be applied [3, 5, 20]. Further
interesting analyses of homogenization problems and their applications can be found

in [1, 2, 26, 27], cf. also the references given in these papers. .

The rest of this paper is organized as follows: In the next section we introduce
our upscaling technique. Thereafter we show that it is not necessary to solve the fine
scale pressure equation in order to compute the coarse scale permeabilities. Section
3 contains some simple analytical examples illustrating important properties of this
upscaling technique. In Section 4 we present an algorithm for computing the coarse
scale permeabilities. Section 5 contains the numerical experiments, and in Section 6

we state some concluding remarks.

2. Upscaling. For simplicity, we consider a two-dimensional reservoir. The

method is generalized to 3D in a straight forward manner.

Let P represent the unknown fluid pressure related to one-phase flow in a het-
erogeneous reservoir, g the gravitational constant, p the density of the fluid and D

the depth of the reservoir measured in the direction of gravity. Then the pressure
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equation arising in reservoir simulation can be written on the form
(2.1) V- [A(VP - pgVD)] + % -0 inQCR

see for instance Ewing [15] or Peaceman [24]. This equation results from Darcy’s law
and conservation of mass. In (2.1), the function A describes the permeability of the
reservoir and can be a scalar or tensor function. Normally, A would be the so-called
mobility function representing, not only the permeability of the medium, but also
other physical parameters such as the viscosity of the fluid in question. However, in
this paper we will always refer to A as the absolute permeability. Source terms, such
as injection and production wells located inside (2, are incorporated in the model (2.1)
by the function gq.

Throughout this paper we will assume that p and g are given constants. Then,
by putting f = ¢/p and p = P — pgD the pressure equation (2.1) can be rewritten on

the form
(2.2) V-[AVp|+f=0 inQCR>

Next, we assume that the reservoir is surrounded by non-permeable rocks. Hence, we

have a no-flow boundary condition on the entire boundary, i.e.

(2.3) v-n=0 on 0%,

where n denotes the outwards directed normal vector of unit length, while the Darcy
velocity v is defined as

(2.4) v =—AVp.

Often, the absolute permeability A is defined in terms of a fine grid on 2, i.e. A is
constant on each fine grid-block. Normally, this representation of A is not suitable for
reservoir simulators and A must be upscaled'. This upscaling problem can roughly
be formulated as follows: We want to replace A in (2.2)-(2.3) by a so-called effective
permeability A, defined in terms of a coarse grid on 2, such that the resulting velocity

field
Ve = —AcVpe
is a good approximation of the fine scale velocity field v, defined in (2.4). Here, pe is
the solution of the coarse scale pressure equation
V [AeVpe] + f =0 in Q C R,
ve-n=0 on 0Q.

IThe reason for this is that the data are generated by geostatistical methods; the actual physical

data are sparse.



As mentioned above, our approach to this problem is to determine A, such that the
difference between the fine scale velocity field v and the coarse scale velocity v, field
is minimized. In order to describe the method, we need to introduce some notation
and the weak formulation of the boundary value problem (2.2)-(2.3).

Let {;}¥, be a set of coarse grid-blocks satisfying

N
(2.5) Q=[]0 and ;[ Q; =0 for i #j,

=1

then we can define the set () of admissible coarse scale permeabilities as follows

QZ{AH:Q—)IR,+; AH

Q, is constant for i =1,..., N,

(2.6) and 0 < Ap(z) < oo for all z € Q}.

We are going to determine A, in @ such that the difference between v and v, is
minimized. Notice that if Ay € @, then Ay is uniformly positive and bounded. In
fact, Ag is defined by a finite number of positive values. For every Ay € (Q we define

the following boundary value problem

V- [AgVpr]+f=0 in QCR?
(2.7) vg-n=0 ondQ,

and the associated velocity
(28) VH(AH) = —AHVpH(AH).

Let H'(2) denote the classical Sobolev space of square-integrable functions with

square-integrable distributional derivatives. If the subspace V' C H'(Q) is defined by

V = (¢ e B\(Q); /dew=0},

then the weak formulation of (2.2)-(2.3) can be defined in the usual way: Find p € V
such that

(2.9) / Vi - (AVp) dx = / fudx forally eV.
Q Q
Next, the weak formulation of (2.7) is: Find py = pg(Ag) € V such that
(2.10) / Vo - (AnVpr(Ag)) do = / fodz forall € V.
Q Q

In order to get well-posed variational problems (2.9) and (2.10) we must impose

some assumptions on f and A. More precisely, we assume that f € L2(Q) satisfying

(2.11) /Qf dz =0,
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and that the absolute permeability A is a uniform positive and bounded function, i.e.
(2.12) 0<m<Az) <M foralzeq,

where m and M are finite constants. In the subspace V of H'(Q) Poincaré’s inequality
holds, cf. e.g. Dautray and Lions [8]. Hence, if the boundary of  is sufficiently
smooth, then it follows from (2.11), (2.12) and the Lax-Milgram theorem that the
problem (2.9) is well-posed, see e.g. Dautray and Lions [8]. Furthermore, the problem

(2.10) has a unique solution pg = py(Ag) for every Ay € Q.

2.1. An output least squares formulation of the upscaling problem.
We consider a so-called output least squares formulation of the upscaling problem
described above. More precisely, we would like to define the effective permeability A,

as the solution of an optimization problem of the form
2.13 min_||vg(Ag) — v||?
(2.13) i [|va(Aw) = v

where v (Am) and v are the velocity fields associated the coarse and fine scale per-
meability defined as in (2.4) and (2.8), respectively. Here, || - || is a suitable norm
defined on L?(2) x L?(2). This solution concept, often referred to as an output
least squares (OLS) formulation of the problem, is frequently applied to solve inverse
problems and parameter identification problems, cf. e.g. Banks and Kunisch [4] and
Engl [14]. Clearly, the upscaling problem considered in this paper is a sort parameter
identification problem. Thus, we find it appropriate to apply the OLS-formulation.
Unfortunately, (2.13) is a nonlinear optimization problem. In addition, parameter
identification problems of this type tend to be ill-posed. Therefore, to make sure that
we get a well-posed problem and to obtain a simpler minimization problem we apply
Tikhonov regularization. That is, the solution of the problem (2.13) is approximated

by the solution of the minimization problem
(2.14) Jmin (v = vIP +a [ Ar = Alla)

where o > 0 is a small positive regularization parameter?. Clearly, the regularization
term « ||Ag — A||i2(9) is a convex term. Hence, for every a > 0 the problem (2.14)
is likely to be more well-behaved than the problem (2.13). Furthermore, for small
values of « the solution of (2.14) should be a good approximation of the solution of
(2.13).

unestion whether the problem (2.13) is well-posed or not will not be discussed any further

in this paper. For a general treatment of non-linear ill-posed problems we refer to Engl, Kunisch

and Neubauer [13].



Obviously, for a general norm ||- || we have to compute the fine scale velocity field
v in order to solve (2.14). That is, we must solve the fine scale pressure equation (2.9),
cf. also (2.4). Obviously, for sufficiently fine scales, that is extremely time-consuming.
However, if a special type of norm ||-|| is applied in (2.14), then it turns out that this
step can be avoided. Let the ||-||y-1-norm on L2(2) x L%(f2) be defined as follows

(2.15) Iwllar = ( [ wA~tw] o) "

for w € L2(Q) x L?(Q). Here, [-,-] denotes the Euclidean inner-product on lR?. This
is a so-called weighted L2-norm with weight-function A~!. If this norm is applied in

(2.14), we obtain the following optimization problem
(2.16) i (Vi () = vIB-1 +all A = Allfage) )

In this paper we define the effective permeability A, to be the solution of the problem
(2.16). The resulting method for computing the coarse scale permeabilities will be
referred to as the Weighted Output Least Squares (WOLS) method. Clearly, to make
the error in the velocity field as small as possible we would like to choose a as small
as possible. Therefore, whenever possible, we will put « equal to zero.

Let us verify that it is not necessary to solve the fine scale pressure equation (2.9)
in order to minimize (2.16). For an arbitrary coarse scale permeability Ag € Q we

find that

Ve (Ar) = vI3-1 = IAuVpr (M) — AVD|[; -
= / [AHVpH(AH) — Avp,AilAvaH(AH) — Vp] dz
Q

_ /Q [AsVpu(An), A A Vpr (An)] do — /Q (s Vps (An), Vp| dz
(2.17) - /Q [AVp, A~ AnVpr (An)] dz + /Q [AVp, Vg da.
Putting ¢ = p € V in (2.10) it follows that
(2.18) /Q[AHVPH(AH),Vp] dx = /Q Vo (AaVpu(Ag)) dz = /pr dz,
and thus
219) [ \Vp. A" AnVpr(Am] do = [ Vp- (AnVpa(dn) do= [ fpds
Hence, from (2.17)-(2.19) we find that

Ivir(As) = ¥Ies = | (A Vo (A A~ An Vs (M) de

—2/ fpdw+/[AVp,Vp] dz
Q Q
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for every Ay € (. Since the two latter terms here are independent of Ap, we solve

(2.16) by minimizing the following cost-functional
(2.20) J(Am) = / [ArVpr(Ar), A"' AxVpr(Ax)] de + || A — A||%z(9)
Q

defined on ). Moreover, it follows that it is not necessary to solve the fine scale

pressure equation (2.9).

Remarks.

1. Notice that no particular relation between the fine scale grid and the coarse
scale grid is required. In the derivation of the WOLS-method above, no
reference to the fine scale grid is made.

2. The permeabilities can be scaler or symmetric and positive definite tensors.
However, for the sake of simplicity, we will only consider the scalar case in
this paper. In the tensor case, it would probably be more difficult to compute
the derivatives of the cost-functional J(-), cf. section 2.2 below.

3. Throughout this paper we will consider two dimensional model problems, i.e.
Q c R®. However, it should be mentioned that the WOLS-method is also

applicable in the case of three space dimensions.

2.2. Differentiation of the cost-functional. Many minimization algorithms
require the partial derivatives of the cost-functional. This is, for instance, the case
for the method of steepest descent, Newton’s method and the conjugate gradient
method, cf. e.g. Fletcher [16]. The purpose of this section is to show how the partial
derivatives of the cost-functional J(-), defined in (2.20), can be computed efficiently.

Recall that every coarse scale permeability Ay € () is piecewise constant on the
coarse grid-blocks {Q;}Y ,, cf. (2.6). Therefore, every Ag € Q is represented by a

finite sequence of positive real numbers Aq,..., Ay, such that
Apg(z)=X; forallz e Q;andi=1,...,N.
From (2.20) we find that

T(Am) = T, .o, An) =

N
ZA,?/ (Vpr (s An), A Vpr (A, - Aw)] da
i=1 Q2
N N
(2.21) +a ZA%|Q,| - 2a Z)\Z/ Adz +a/ A? dz,
i=1 i=1 U Q

where pg(A1,...,AN) = pa(Ag). Now we want to find a method for computing the

partial derivatives 0J/0\; for j = 1,..., N, of the cost-functional J(-). A straight
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forward approach to this problem would be to approximate the partial derivatives by

finite differences, i.e.

6J(/\1 N /\N)%J()\l,...,)\j-}-A/\j,...,/\N)—J()\l,...,/\j,...,/\]\{)
ax, AN, ’

for j =1,...,N. Clearly, this approach requires the computation of pg(A1,...,A; +
AXj,...,An)forj=1,...,N,cf. (2.21). Hence, N+1 coarse scale pressure equations
of the form (2.10) must be solved. If the number of coarse scale grid-blocks N is
large, then this process would be computationally expensive. However, if an auxiliary
problem is introduced, it turns out that it is only necessary to solve two coarse scale
problems of the form (2.10) in order to compute all the partial derivatives of J(-),

independent of N. In order to see this, we differentiate J with respect to Aj,

oJ
o - ”]’/ (91O, An), A7 Vi O, Aw)] d
J
+Z/\z 6)\ |:/ [VPH Al, .y ),Aflvsz(/\l,...,)\N)] d;[;:|
+2a)\j|ﬂj|—2a/ A dz
Q;
22)\1/ [VoarAis - AN), AT V(A ..o, AN)] da
2
N .
2 : A Hy\
+ ;)\1 /Ql[va(Al, 7 ) v 6}\‘7 (A]_, ,AN):|] dx
(2.22) +2a>\,-|Q,-|—2a/ A dz.
Q;

Thus we have to determine Opg/OA;. From equation (2.10) and the definition (2.6)
of @) it follows that

N
Z/\,-/ w-va(/\l,...,AN)dx:/f«p for all v € V.
i=1 Q; Q

Again, we differentiate with respect to A; to obtain the equation

/w.va(Al,..., d:c+Z)\/ Vi - v(apH(,\l,...,,\N)> dr =0
§2;

forally € V, or

(2.23) / Vi - (AuVg;) d / Vi - Vpr(AL,- .., An) do for all €V,

where ¢; = Opr/0A;. That is, to compute Opg/OA; for j = 1,...,N, we have to
solve N elliptic PDEs of the form (2.23). However, all these PDEs are very similar.

Only the integration area on the right hand side of equation (2.23) differs for the
8



g;’s. This observation can be exploited by introducing an auxiliary problem. Let the

bilinear form aa, (-,-) on V x V be defined as follows
anul) = [ V0 (AnVe) da,
and recall that ¢; = Opu/0\; satisfies
224)  any(g,0) = — /Q Vo - Vpu(h,. .. An) dz for all €V,

cf. equation (2.23). Now, the auxiliary problem is defined as follows: Find 7 =

T7(Ag) € V such that
(2.25)  an,(r,0) = / [AuVpr(An), AuA='Ve] do for all ¢ € V.
Q

Then, from (2.22) and by putting ¢ = ¢; in (2.25) we find that

oJ
TV 2>\j/ [Vpu (A, .., AN), A7 Vg (A, ..., An)] da
) o,

O\
+2/[AHVPH()\1,...,)\N),AHA_lvq]'] dz
Q
+2aA;|Q;] —2a/ Adz
Q;
zzxj/ (VP (s An), A= Vpa (e, - Aw)] da
Q;

+2ap, (T(AH), g5) + 2aX;|Q;| — Za/ A dz.
Q;

Finally, by putting ¢ = 7(Ag) in (2.24) it follows that

oJ
= 2)\1'/ [Vpa(At, - AN), A ' Vpr (A1, ..., AN)] do
Y Q;
—2/ Vs AN) - Vpi (s -5 Aw) dao
Q;
(2.26) +2a\;|Q;| — Za/ A dz,
2

where 7(A1,...,An) = 7(Ag). Clearly, from (2.26) it follows that it is sufficient to
solve (2.10) and (2.25) in order to compute 0J/9A; for j = 1,...,N. Moreover, the
stiffness matrices generated by finite element discretizations of (2.10) and (2.25) are

identical, provided that the same discretization is used.

3. Analytical examples. In this section we will present some simple analytical
examples illustrating some properties of the weighted output least squares (WOLS)
scheme derived above. In the next section we will discuss how to solve the mini-
mization problem (2.20) computationally and some numerical examples will be given

in Section 5. However, we will in this section describe some simple cases where the
9



minimization can be done by hand and where we get explicit expressions for the op-
timal values of the upscaled permeability. These expression are used to compare the
WOLS-method by the less computationally efficient output least squares OLS-method
and some simple averaging schemes.

Throughout this section we consider the minimization problem (2.14) in the case
of a = 0. The upscaling problem is in this case easily seen to not have a unique

solution; consider the unique solution of the problem
-V - (AVp) =, v-n =0 on 99, /dezczo,
with velocity field given by
v =—-AVp.
Similarly, we let 8 > 0 be a given constant and consider the problem
-V - (BAVD) = f, v-n =20 on 09, /Q;de:&
with the velocity field
v =—(3\Vp.
Then, by uniqueness we have p = 8p, and thus
v=-0\Vp=-AVp=v.

Hence, two permeability fields A and S\ generate exactly the same velocity field. This
means that given a fine scale permeability field A, the minimization problem (2.14)
can, in the case of a = 0, only determine the coarse scale permeability field Ay up to
multiplication by a positive constant.

This observation can be used to reduce the degrees of freedom in the problem of
upscaling. Consider the problem of upscaling from four to two values in the perme-
ability field for the pressure equation defined on the unit square Q = [0,1] x [0, 1].
In Figure 3.1 we have depicted the data; the "fine-scale” permeability Ay is given by
the values A1, A2, A3, Ay on the elements e; ez e3.e4 respectively. Given these data, we
want to compute the optimal values of the ”coarse-scale” permeability Ay field given
by the values Aj, A2 on the elements E, E» respectively, cf. Figure 3.2. Based on the

observations above, we can with no loss of generality put
/\4 == A2 =1.

In both problems the source term is defined by
10



Fi1Gc. 3.1. “Fine-scale” model.

E

=

Fia. 3.2. “Coarse-scale” model.

a9 for (z,y) € S1 =[0,1/10] x [4/10,6/10],
f(@,y) =¢ —ao for (z,y) € S» = [9/10,1] x [4/10,6/10],

0  elsewhere,

where the strength ag of the source is given.

By discretizing the ”fine-scale” model

_V(Ahvph)zfa Vh'n=0 /Phd$=07
Q

using linear elements with nodes marked in Figure 3.1, we get the ”fine-scale” discrete

velocity field defined by
11



.
20 + A +1
280\
(A1+1€?A11+/\2) 1.1 for (z,y) € e,
— A2
AL+ 22X + A3
280\
()\2+)\3)0()\21+/\2) A\ A\ fO’I' (x,y) € e,
3— A1
280\ 2 3
eTEE Ty N1 for (z,y) € es,
5 —
A+ A3 +2
2
TS for (z,y) € ea,
{ Al — A3

where By = 9a,/1000, and where we have used A4 = 1. Similarly, by discretizing the

” coarse-scale” model

Q

using linear elements with nodes marked in Figure 3.2, we get the ”coarse-scale”

discrete velocity field defined by

3A+1
AB__;_Jl 1_A fO’f’ (xay)EEla

vH(2,y) = i
Aﬁ—ﬁl A—1 fO’I' (xay) € E27

where we recall that A» = 1 and where we have used A = A; to simplify the notation.
Having these expressions for the ”fine-scale” and ” coarse-scale” velocities, we consider

first the Output Least Squares (OLS) approach and seek the minimum of
Jols(A) = ||Vh — VH ||(L2(Q))2-

That is, given A1, A2 and Az, we seek the value of A that minimizes J,;s. The unique

minimum is given by

2122 + A A3 + Ao
AMAs + X +2X3

Aols =

Next we consider the weighted output least squares (WOLS) scheme and thus seek

the minimum of

Twora(A) = / [AVpu, A" AVpu] dz,
Q

cf. (2.16) with @ = 0. The unique minimum of J,,.;, is attained at

A1d2 + A1 A2 g

A2Asz + A1 As
12
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A=A

N=1

FiG. 3.3. Upscaling from four to two values. Note that A4 and Aa is chosen to be 1.

We want to compare these upscaling formulas by similar formulas given by arithmetic,

harmonic and geometric averaging for the upscaling problem defined in Figure 3.3.

In the following Table we compare the five upscaling schemes for some different data;

note that in these cases € is assumed to be a small (¢ < 1) positive constant and we

have chosen A3 = 1.

General AM=l—-g =14+ | =g, =1 | A =¢, A2=1/e
Agrit = 5(A1 + X2) 1 e+ m1/2 | He+1l/e)m 5
Aparm = 252822 1—¢? 25~ 2 2557 ~ 2
Ageom = VA1 A2 VIi-e2r1- 32 VE 1
Ags = 21iatiiaatls 1- 12 el ~1/3 1
Auots = 242350220 1—¢2 2.5 ~ 2 2551 ~ 2

We observe from this table that:

e For small jumps, all the methods produce almost identical results.

e All the methods reproduce a constant permeability.

e The results of the five methods vary significantly for permeabilities with large

jumps.

presented below.

This issue will be analyzed further in the numerical experiments

e As expected from the definition of the WOLS-method, it emphasizes the low

permeable zones and should therefore be applicable when it is desired to

reproduce such regions in the upscaled permeability field.

e For the simple example presented here, the harmonic averaging and the

WOLS-method produce identical results. We will discuss this issue further

below.

4. A fix-point algorithm. The purpose of this section is to present a simple

algorithm for computing the minimum point A, of the cost-functional J(-), defined in

13




(2.20). Clearly, the optimization problem

(4.1) Ar}r{lienQ J(Am)

is non-linear, and hence non-trivial. This sort of problem can be solved by one of
the standard minimization methods, like Newton’s method or the conjugate gradient
method, cf. e.g. Fletcher [16]. However, for the sake of simplicity, we will apply a
fix-point algorithm to compute the stationary point of J(-). This method is easy to
implement and proved to be efficient enough to solve our test problems, cf. Section 5.
However, it should be noted that large scale applications of our scheme would require
the implementation of faster methods for solving this minimization problem.

Our algorithm is based on formula (2.26) for the partial derivatives of J(-). More
precisely, from equation (2.26) we find the following condition for a minimum point

AL, - An of J(4),

and thus
fQj V1AL, AN) - Vpag (A, ..., AN) do + anj A dx
7 fQj [VpH()\l, .. .,)\N),A71VpH()\1, .. .,/\N)] dr + a|Qj| )

Based on this observation we now define the following fix-point algorithm to compute
approximations Ag), Ag), Ag),. e ASL?), ..., of the effective permeability A, i.e.

approximations of the solution of (4.1).

Algorithm 1.
1. fori=1,...,N do
(a) define /\§°’
2. for n =0, ..., until convergence do
(a) Compute pH(/\gn) e /\S\?)) by solving the following problem: Find pH()\gn), ey /\5\?)) =
pu(AYM) € V such that

/ Vo - (AP Vpy (A)) do = / fidz for all y € V.
Q Q

(b) Compute r(A™ .., /\5\?)) by solving the following problem: Find 7(A{™ ..., /\S\?)) =
T(Ag?)) € V such that

|96 V) do = [ A Vau(aG), AA VY] da
Q Q

for allyp € V.

(c) if @ =0 then
14



stop=N —1
)\ggﬂ) — )\g\?)
else stop = N.
(d) fori=1,...,stop do

Jo, VIO, oA - Vo (WY, A de +a f, A da
Jo Vo™, A, A1V (W™, A da + ||

i

At —

Recall that if @ = 0 then the problem (2.16) does not have a unique solution, see

Section 3. In Algorithm 1 this problem is handled by putting /\S\?) = )\53) for all n.

5. Numerical experiments. In this section we present some numerical exam-
ples illustrating the behavior of the upscaling technique presented above. Consider
the fine scale pressure equation (2.2)-(2.3) and recall that in each experiment we need
to specify the solution domain 2, the source term f and the (fine scale) absolute
permeability A. In addition, a set of coarse scale grid blocks {Q;} ; satisfying (2.5)
has to be defined.

In all the experiments presented below, the solution domain is given by Q =

(0,3) x (0,3), and, if not stated otherwise, the source term is given by

1 for (z,y) € (12/32,15/32) x (18/32,21/32),
(5.1) fl@y) =< =1 for (z,y) € (84/32,87/32) x (78/32,81/32),

0 elsewhere.

That is, there is one injection well and one production well located close to the
lower left corner and upper right corner of the reservoir, respectively. Note that this
particular f satisfies condition (2.11). Obviously, in order to implement Algorithm
1, equations of the form (2.10) and (2.25) have to be solved numerically, cf. steps
2a and b in Algorithm 1. In this paper these equations are solved by the finite
element method. If not stated otherwise, we apply standard piecewise linear finite
elements. In all the experiments, the finite elements are used as coarse grid-blocks
{€Q;}Y¥,. All the implementation is done within the Diffpack framework, cf. [10] and
Langtangen [22]. The pressure equation (2.10) and the auxiliary problem (2.25) are
solved using the Conjugate Gradient method in conjunction with the precondition

technique studied in [7].

5.1. Case I: A simple test problem. First, we want to check that our method
produce reasonable results for simple smooth permeability functions. In this experi-

ment the absolute permeability A is given by

A(z,y) = 1.5+ sin(6rzy) for (z,y) € Q,
15



i.e. A is smooth and has small variation. The coarse grid-blocks {Q;}Y, are defined
in terms of a uniform 32 x 32 triangular mesh on 2. The effective permeability A, is

computed by Algorithm 1, applying the arithmetic average as initial guess,
1
A0 = —/ Az)dz forj=1,...,N.
101 Jo, M
The iteration was halted when
|7(AM)) — Al < 1070,

Putting a = 0, this stopping-criterion was fulfilled after 8 iterations. Figure 5.1 shows
the velocity fields generated by our WOLS-method and the arithmetic average, and
the velocity field obtained by solving the fine scale pressure equation (2.9). The latter
was solved on a uniform 128 x 128 triangular mesh. We see that both the arithmetic
average and the WOLS-method produce reasonable results in this case. Furthermore,
Table 5.1 shows that the value of the cost-functional J(-) is almost identical for the
arithmetic average and for the effective permeability A, generated by the WOLS-
method. Hence, since the arithmetic average is known to produce accurate results
for simple smooth permeability functions, we conclude that also the WOLS-method

seems to handle this sort of problems adequately.

method J

arithmetic average 1.20978 + 10~*

weighted output least squares (WOLS) | 1.20756 x 10~*
TABLE 5.1

The table shows the function values of the cost-functional J(-) for Case I.

5.2. Case II: A reservoir containing a barrier. Next, we consider a reservoir
containing a low-permeable region. This low-permeable zone is located close to the
center of the reservoir and has the shape of a thin rectangle, see Figure 5.2. On the
coarse scale level this barrier is not resolved. More precisely, the absolute permeability

A is defined as follows

Ale.y) 6 for (z,y) € [15.5%3/32,16 % 3/32] x [3 % 3/32,29 x 3/32],
T,Y) =
1 elsewhere,

where § is a small positive parameter. For this problem it turned out to be possible
to solve (2.16) with @ = 0, by computing the effective permeability for a decreasing
sequence of §; § = 0.016,0.015,0.014, . ..,0.004. For each value of § the approximation

of the effective permeability from the previous value of § is used as start vector
16
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Fic. 5.1. The figure shows the velocity fields for the problem described in Case I; upscaling of

a smooth permeability field.

in Algorithm 1. For § = 0.016 the arithmetic average was used as initial guess.

Applying the stopping-criterion

|T(AG)) —

Algorithm 1 converged in 4-8 iterations, for each value of 4.
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- N

f=1 N=1

Fi1G. 5.2. The geometry of the reservoir used in Case II.

Figure 5.3 shows the numerical results computed on a uniform 32 x 32 triangular
coarse grid. Comparing the results with the velocity field computed on the fine grid (a
uniform 64 x 64 triangular mesh) we see that the WOLS-method produce far better
results than the arithmetic average. We also observe that the geometric average
produce a reasonable permeability field in this case. However, if a uniform 16 x 16
triangular coarse grid is applied, then both the arithmetic average and the geometric
average fail to solve this problem, cf. Figure 5.4, whereas the WOLS-method produce
an appropriate velocity field. From Table 5.2 and Table 5.3 we observe that the
function value of J(-) is smaller for the WOLS-method than for the simple averaging
schemes. We conclude that the results of this example suggest that the WOLS-
scheme gives a more accurate representation of tiny low-permeable zones than the

simple averaging schemes can produce.

method J

arithmetic average 2.53108 x 104

geometric average 2.43801 x 104

weighted output least squares (WOLS) | 1.85891 % 10~
TABLE 5.2

The table shows the function values, computed on a uniform 32 X 32 triangular grid, of the

cost-functional J(-) for Case II

5.3. Case III: A reservoir containing a barrier and a channel. The ge-

ometry of the reservoir considered in this example is similar to the one studied in Case
18
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Fic. 5.3. The figure shows the fine scale velocity field and the coarse scale velocity fields for

Case II; upscaling from a 64 X 64 to a 32 x 32 mesh.

II. To challenge our upscaling technique we consider a reservoir with a low-permeable

and a high-permeable zone located next to each other, see Figure 5.5. This structure

is positioned such that it is not resolved in the uniform 32 x 32 triangular coarse grid.

In this problem the absolute permeability A is defined on a uniform 64 x 64 triangular

19



method J

arithmetic average 8.55107 + 10~

geometric average 7.44147 % 10~

weighted output least squares (WOLS) | 4.32617 x 10~*
TABLE 5.3

The table shows the function values, computed on a uniform 16 X 16 triangular grid, of the

cost-functional J(-) for Case II.

grid as follows

] for (z,y) € [15%3/32,15.5%3/32] x [3%3/32,29% 3/32],
Alz,y) = 1/6 for (z,y) € (15.5% 3/32,16 x 3/32] x [3 x 3/32,29 * 3/32],
1 elsewhere,
for a small § > 0. Again, by computing the effective permeability for several values of
6, 6 = 0.05,0.04,...,0.01,0.009, 0.008,...,0.005, we were able to solve the optimiza-
tion problem (2.16) with zero regularization, i.e. a = 0. For each value of §, 6-11

iterations were needed to fulfill the stopping-criterion
17 = TG ) < 1078

Figure 5.6 shows that both the effective permeability computed by the geometric
and arithmetic average fail to produce a correct flow picture in this case. However, the
WOLS-method solves this problem adequately. Moreover, in Table 5.4 we observe that
the function value of the cost-functional J(-) is again smaller for the WOLS-method

than for the geometric and arithmetic average.

method J

arithmetic average 8.49975 % 1073

geometric average 4.07199 x 10~4

weighted output least squares (WOLS) | 1.81866 x 10~*
TABLE 5.4

The table shows the function values of the cost-functional J(-) for Case IIL

5.4. Case IV: A reservoir containing a channel. The geometry of the reser-
voir considered in this experiment is depicted in Figure 5.7. More precisely, the source
term f is given by

1 for (z,y) € (15.5% 3/32,16.5%3/32) x (6x3/32,7%3/32),
flx,y) =4 —1 for (z,y) € (28 x3/32,29 3/32) x (26  3/32,27 * 3/32),

0 elsewhere,
20
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FiG. 5.4. The figure shows the fine scale velocity field and the coarse scale velocity fields for
Case II; upscaling from a 64 X 64 to a 16 x 16 mesh.

and the absolute permeability A is defined as follows

10 for (z,y) € [15.5 % 3/32, 16 » 3/32] x [10 * 3/32,20 * 3/32],
A(z,y) =< 0.1 for (z,y) € (0,15.5%3/32) U (16 * 3/32,3) x [10  3/32,20 * 3/32],

1 elsewhere.
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Fi1c. 5.5. The structure of the reservoir used in Case III.

That is, the reservoir contains a high-permeable zone acting as a channel.

In this example we applied bilinear shape functions defined on quadratic elements
in the finite element discretizations of equations (2.10) and (2.25), cf. steps 2a and
b in Algorithm 1. To compute the effective permeability Ao, the optimization
problem (2.16) was solved for several values of the regularization parameter o, a =
1,1/2,1/4,...,1/64. For every value of «, the previously computed solution of (2.16)
was used as start vector in Algoritm 1. It turned out to be impossible to solve (2.16)
with zero regularization using Algorithm 1. For a < 1/64 the algorithm diverged.

In this case a stopping-criterion of the form
(52) A5 — A7V ll(0) < 0.01

proved to be suitable to obtain convergence. By using the stopping-criterion applied
above, the number of iterations needed to get convergence was much higher. For
each value of «, the stopping-criterion (5.2) was fulfilled after 2-5 iterations. The
coarse and fine scale grids were defined as uniform 32 x 32 and 64 x 64 meshes on {2,
respectively.

Figure 5.8 shows that both the effective permeability computed by the WOLS-
method and the effective permeability defined by the arithmetic average produce
reasonable flow pictures in this case, but the harmonic average fails to solve this
problem. Recall that in Section 3 we observed that the harmonic average and the
WOLS-method produced identical results for some analytical examples. In general,
these methods do not define identical coarse scale permeabilities, in the present ex-

periment the results computed by the WOLS-scheme differs significantly from the
22
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FiG. 5.6. The figure shows the fine scale velocity field and the coarse scale velocity fields for
Case III; upscaling from a 64 X 64 to a 32 x 32 mesh.

results obtained by the harmonic mean. These observations are confirmed by Table

5.5.

It should be mentioned that the WOLS-method seems to produce more accurate

results for low-permeable zones than for high-permeable zones, cf. the computational

results in the cases II-IV above. This property of our upscaling technique has been ob-
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Fic. 5.7. The geometry of the reservoir used in Case IV.
method J
arithmetic average 3.48076 * 102
harmonic average 1.60845 x 10~!
weighted output least squares (WOLS) | 3.45819 102
TABLE 5.5

The table shows the function values of the cost-functional J(-) for Case IV.

served in several experiments, and can be explained as follows; recall that the inverse
of the absolute permeability A~! is applied as weight-function in the definition of the
||-[|A-1-norm, cf. (2.15). The effective permeability A, defined by the WOLS-method,
is determined such that the difference, measured in the || -||5-1-norm, between the fine
scale velocity field and the coarse scale velocity field is minimized. Hence, in a low
permeable zone, where A is close to zero and A~! is large, the WOLS-method is likely

to produce accurate permeability fields.

5.5. Case V: Permeability fields generated by lognormal distributions.
In this section we will study permeability fields generated by lognormal distributions.
Data of this kind is frequently used as input to reservoir simulators, cf. e.g. [23, 28],
and should therefore provide interesting and challenging test problems.

In all the examples presented below, we apply a lognormal distribution with mean
value e!/2? and variance e — e to produce the fine scale permeability fields. As in the
previous section, equations (2.10) and (2.25) are discretized by the finite element

method using bilinear shape functions defined on quadratic elements. The effective
24
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Fic. 5.8. The figure shows the fine scale velocity field and the coarse scale velocity fields for
Case IV; upscaling from a 64 x 64 to a 32 X 32 mesh.

permeability A, was computed by solving problems of the form (2.20) for a decreasing
sequence of regularization parameters; o = 0.01, 0.005, 0.0025, ...,7.8125-1075. For

each value of a, a stopping-criterion of the form

||Agb) - Ag‘_l)lle(g) < 0.001
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was used to terminate Algorithm 1. It turned out that, if the approximation of the
effective permeability obtained for the previous value of a was used as start vector in
Algorithm 1, then this convergence criterion was fulfilled after 2-17 iterations. In
these experiments we used a source term of the form (5.1), and the permeability data
was scaled up from a 64 x 64 mesh to a 32 x 32 grid.

Finally, it should be mentioned that the input lognormal data was generated
by the software package CONTSIM developed at the Norwegian Computing Center
(http://www.nr.no/sand/prj/contsim.html).

5.5.1. Case V a). In this experiment the correlation length of the fine scale
data is 1.0 in both the horizontal and vertical direction. Thus, since the domain of
the reservoir is Q = (0, 3) x (0, 3), we consider a rather smooth permeability field. For
such problems, any “reasonable” and well-defined upscaling method should produce

acceptable results, cf. Figure 5.9 and Table 5.6.

method J

arithmetic average 4.0650 * 10~*

weighted output least squares (WOLS) | 4.0613 x 10~
TABLE 5.6

The table shows the function values of the cost-functional J(-) for Case V a).

5.5.2. Case V b). To challenge our upscaling method we now study permeabil-
ity data with correlation length 0.1 and 2.0 in the horizontal and vertical direction,
respectively. That is, the reservoir has a layered structure: rapid variation in the
permeability field in the horizontal direction and slow variation in the vertical direc-
tion. In this case, it is difficult to identify any proper flow pattern. The picture looks
rather chaotic, see Figure 5.10. It seems like both the coarse scale permeability field
defined by the arithmetic average and WOLS tend to smooth the fine scale data. Both
methods handle this problem adequately and they produce almost identical results,

cf. Table 5.7.

method J

arithmetic average 2.0586 % 103

weighted output least squares (WOLS) | 2.0526 x 10~3
TABLE 5.7

The table shows the function values of the cost-functional J(-) for Case V' b).
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F1G. 5.9. The figure shows the velocity fields for the problem studied in Case V a); upscaling
from a 64 X 64 to a 32 x 32 mesh.

5.5.3. Case V ¢). Consider again the permeability data studied in Case V b).
What will happen if a barrier is positioned close to the injection well? More precisely,

we “re-scaled”, by a factor 0.001, the fine scale permeability field in the region

S={(z,y) € 0<z<15and 85%3/32<y < 9x3/32}.
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F1G. 5.10. The figure shows the velocity fields for the problem studied in Case V b); upscaling

from a 64 x 64 to a 32 X 32 mesh.

That is, the permeability is of order 0.001 in S. Notice that the low permeable zone S

is not resolved on the coarse scale grid (a 32 x 32 uniform mesh). Clearly, this barrier

introduces a definite flow pattern to our test problem, see Figure 5.11. As expected, in

this case the WOLS-method produces far better results than the arithmetic average,

cf. also Table 5.8.
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method J

arithmetic average 4.7970 x 1073
weighted output least squares (WOLS) | 2.1832% 103
TABLE 5.8
The table shows the function values of the cost-functional J(-) for Case V c).

6. Concluding remarks. We have introduced a new upscaling technique for
one-phase flow in heterogeneous reservoirs. The method computes an upscaled per-
meability which minimize, in proper norms, the difference between the fine scale and
the coarse scale velocity field. No relation between the fine scale grid and the coarse
scale grid is assumed. Moreover, the method does not require the solution of the
fine scale pressure equation. Through a series of analytical examples and numerical
experiments we have seen that the method produce accurate results for several test

problems.
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