

Integration of Structured Review and
Model-based Verification: a Case Study

DART /1001/04

Demissie B. Aredo

Issa Traore
M. Liu Yanguo

Hong Ye

 2

Tittel/Title: Integration of Structured Review and Model-
based Verification: a Case Study

Dato/Date: August
År/Year: 2004
ISBN: 82-539-0509-2
Publikasjonsnr.:DART/1001/04
Publication no.:

Forfatter/Authors: Demissie B. Aredo,
 Issa Traore,
 M. Liu Yanguo,
 Hong Ye

Sammendrag/Abstract: In this report, we discuss how structured reviews and formal
verification and validation (V&V) can be integrated into a single development
framework to exploit the synergy between them. The integrated approach uses
graphical modeling techniques and the supporting tools as a front-end to formal V&V
in order to improve feasibility of the framework. This in turns increases acceptability of
formal V&V techniques among software developers by hiding their esoteric features
behind the graphical modeling techniques, which are popular among the software
developers.

Emneord/Keywords:

Structured reviews, Formal methods, Verification &
Validation (V&V), Model-based Verification

Tilgjengelighet/Availability: Public

Prosjektnr./Project no.:

Satsningsfelt/Research field: Software Engineering

Antall sider/No. of pages: 36

 1

Integration of Structured Review and Model-
based Verification: a Case Study

Demissie B. Aredo1, Issa Traore2, M. Liu Yanguo2 and Hong Ye2

1Norwegian Computing Center
N-0314 Oslo, Norway

E-mail: demissie.aredo@nr.no

2Dept of Electrical and Computer
Engineering, University of Victoria,

Victoria, BC, V8W 3P6, Canada
Email: itraore,yliu,hye@ece.uvic.ca

Abstract: In this report, we discuss how structured reviews and formal verification and
validation (V&V) can be integrated into a single development framework to exploit the
synergy between them. The integrated approach uses graphical modeling techniques and
the supporting tools as a front-end to formal V&V in order to improve feasibility of the
framework. This in turns increases acceptability of formal V&V techniques among
software developers by hiding their esoteric features behind the graphical modeling
techniques, which are popular among the software developers.

Keywords: Structured reviews, Formal methods, Verification & Validation (V&V),
Model-based Verification

 2

Software systems are increasingly becoming pervasive in several sectors of the
contemporary society. E-banking, e-commerce, aircraft control, mission-critical satellite
launchers are some examples of applications where high level of dependability is a
crucial requirement. Yet, lower production cost and shorter time-to-market, at the
expense of software quality, have become the driving forces for most software
development organizations. Fortunately, that is not yet the case in organizations
developing critical software systems, e.g. nuclear reactor control, avionics, and mission
control systems where a failure may cause loss of human lives, or economic disaster.

Structured reviews and formal verification and validation (V&V) techniques are among
the principal methods contributing to the improvement of quality of software products
and processes. These techniques have inherent strengths and limitations, e.g. with respect
to cost and coverage. An approach that exploits the synergy between their strengths
improves the reliability of software products significantly.
V&V is a software analysis process, which encompasses requirement and design reviews,
code inspection, and testing. In general, reviews are conducted manually and they are
efficient at checking a limited number of correctness arguments such as completeness,
robustness, and optimality.
The level of quality achieved with informal review techniques may not be sufficient for
critical systems, where high level of dependability and reliability is crucial. An
alternative is to integrate formal methods (FM) into V&V process. FMs are centered on
mathematical theories allowing precise specification of system requirements, and
rigorous analysis to ensure that a product meets the expectations of users, in functionality
as well as quality. Some benefits of introducing FMs into a development process include:

- Improves our understanding of requirements and system design, and reduces
errors and omissions;

- A possibility to mechanically check consistency and completeness of a
specification, and prove that the implementation conforms to the specification;

- Semantically based CASE tools for automation of analysis, design,
implementation and debugging, and animation of specifications in developing
prototypes.

- Formal specifications can be used as a guide for generating appropriate test cases.

Despite these benefits, FMs still have difficulty in breaking into the software industry.
Very few organizations have introduced FMs into their development process. A number
of reasons have been put forward as to why the formal development methods have not
been widely used in the software industry [1]:

- FMs are esoteric – software engineers have not been trained in the discrete
mathematics and logic at the required level. Moreover, customers are not familiar
with formal development methods, and hence are not willing to pay for
development activities they do not monitor.

1 Introduction

 3

- Lack of tool support – most of the research work on FMs focus on the
development of languages and their theoretical underpinning, yet a little effort is
devoted to their practical feasibility, e.g. tool support.

Several approaches have been proposed [2, 3] to integrate FMs into software
development processes. They advocate a lightweight and selective application of FMs
using modeling languages such as the UML [4] as a front-end. Models are created using
graphical notations familiar to the developers. Inspired by this approach, we propose a
framework that integrates structured reviews and formal V&V methods into a single
development framework to exploit the synergy between them. V&V steps that are not
fully automated are reviewed manually, whereas mechanized verification complements
structured reviews in detecting inconsistencies and omissions. The later allows reviewers
to focus on aspects that cannot be automated.

The rest of the paper is organized as follows. In Section 2, an overview of the
methodology underpinning our approach is presented. In Section 3, major concepts of
structured reviews are summarized. In Section 4, a tool for automating our framework is
briefly discussed. In Section 5, feasibility of the proposed framework and the tool is
illustrated. Finally, in Section 6 we conclude.

In this section, we briefly discuss major aspects of our approach to model-based
verification. For a more detailed discussion, readers are referred to [5].

2.1 The Unified Modeling Language

The Unified Modeling Language (UML) [4] is among the most popular modeling
language currently used in the software industry. The visual notations, which can easily
be learned by system developers and the availability of several industrial-strength CASE
tools, are among the factors that contributed to its popularity. UML is an industry
standard for OO modeling languages and enhances communication between different
stakeholders. However, due to the lack of formal semantics for UML notations, V&V
techniques may not be applied directly to UML models. To bridge the gap, we proposed
formal semantics for the UML notations [6, 7] in the PVS specification language. The
proposed semantics is implemented in the PrUDE (Precise UML Development
Environment) tool [8]. The PrUDE tool supports automatic transformation of UML
models into PVS specifications, which are manipulated at the back-end using the PVS
toolkit.

2.2 A Semantic Domain
The Prototype Verification System (PVS) [9] is based on strongly typed higher-order
logic with powerful mechanisms for verification and validation. PVS consists of a highly
expressive specification language (SL) tightly integrated with a type-checker, and an
interactive general-purpose theorem-prover. The PVS-SL provides a very general

2 Model-based Verifications

 4

semantic foundation. A particular strength of PVS is that it exploits the synergy between
its tools. It is beyond the scope of this paper to give a detailed presentation of PVS.
Interested readers are referred to [9].

2.3 Semantics of UML in PVS
The lack of formal semantics for UML notations hampers application of formal
verifications to UML models. There is a great deal of work on providing mathematical
basis for the concepts underlying the UML notations. Several approaches are proposed
[10]: supplemental – informal OO modeling constructs are replaced with more formal
constructs; OO-extension – a novel or an existing formal notation is extended with OO
features to make it compatible with OO features; method integration - an informal or a
semi-formal notation is combined with a suitable formalism to make it precise and
amenable to rigorous analysis.

The first two approaches require developers to deal with a certain amount of formal
artifacts - a major barrier for whole-scale utilization of formal methods in industrial
settings - and suffer from lack of supporting tools. Method integration is a widely used
approach that allows developers to manipulate the graphical models they have created
without having in-depth knowledge of the underlying formalism. We proposed semantics
of a subset of UML notations (class, interaction, and statechart diagrams) [7, 6] using the
method integration approach and the PVS specification language [11] as underlying
semantic foundation. The informal semantics of UML notations [4] is used as a
requirement document. Formal semantic definitions for UML notations facilitate a
development of semantically based CASE tools for rigorous analysis.

We briefly summarize semantic model [6] for UML sequence diagrams. A UML
sequence diagram describes a specific pattern of interaction between objects in terms of
messages they exchange as the interaction unfolds over time to realize the desired
property. The simplicity of sequence diagrams makes them suitable for requirement
specifications that can easily be understood by customers, requirements engineers, and
software developers alike. An interaction captured by a sequence diagram consists of
messages communicated between interacting objects. A message has associated events
specifying significant occurrences having location in time and space, and sender and
receiver objects etc. In our framework, messages are interpreted as pair of send and
receive events. A sequence diagram is interpreted as a prefix-closed set of traces of
events having generic properties such as causality.
A semantic model for a sequence diagram captures properties that a system is expected to
exhibit. Assumptions and invariants on the system are stated as axioms and predicates. A
trace of events is a possible run of the system specified by the sequence diagram if and
only if it satisfies properties stated as predicates provided that the assumption are
satisfied. The static semantics of each model element given as a set of Well-formedness
rules, usually expressed in the Object Constraint Language (OCL) [12], can be captured
similarly.

 5

2.4 PVS Proof Strategies
The ultimate goal of defining formal semantics is to precisely express important system
properties and rigorously verify them. Using primitive proof rules provided in the PVS
theorem-prover requires some expertise and is quite tedious to handle. PVS provides a
mechanism for defining more powerful proof strategies that can significantly increase
proof automation and hence reduce user interaction with the prover. This enables us to
treat a complex proof in a single ’atomic’ step, hiding the tedious intermediary steps from
the user. We have identified and implemented some proof strategies that allow complete
automation of proof of properties based on our semantic models [13]. For instance, for
properties based on sequence diagrams, the proof pattern is quite simple and involves
only two PVS primitive proof rules, namely skolem and grind. These strategies are
implemented in the PrUDE tool and executed in a batch mode.

2.5 Model-based Testing
Program testing - checking whether or not a program exhibits behaviors stated in the
requirement specification -- is an important step in development process.
Using formal specification as a basis of generating test cases contributes significantly to
testing [14]. We present a testing approach based on validation of UML models using
formal semantics and system requirements. The valid models are used to generate test
cases from constraints such as invariants and pre-and post-conditions associated with
model elements. Some UML models are more suitable for model-based testing. The
statechart, sequence and class diagrams can provide a good testing coverage. To generate
test cases from a sequence diagram, for instance, we use a trace-based testing strategy.
After the sequence diagram is validated, graph matrices are built from the sequence
diagram, and then reduced using the node-reduction algorithm [15], in order to generate
test cases.

For statechart diagrams, we propose a transition test model consisting of a set of
transitions associated to the diagrams. This allows generation of test cases at class and
method levels. In UML state-charts, an event corresponds to a method call. Since a
method may be invoked several times, a transition provides only partial pre- and post-
conditions. The global pre- and post-condition is the conjunction of the partial pre- and
post-conditions. Test cases are generated from a partial pre/post-condition pairs, by
decomposing the precondition into disjunctive normal form (DNF), and yielding
elementary sub-expressions. The sub-expressions are then refined into executable
expressions, and then using the domain test matrix technique, suitable test cases are
defined. The PrUDE tool provides a spreadsheet-like table that assists users in applying
the domain test matrix technique.
For Java programs, the PrUDE tool provides a test execution component to which the
generated test cases may be submitted and executed automatically. The tester, based on
abstract expressions extracted from the specification by the PrUDE test component,
provides executable expressions used to generate test cases. During the review process, a
reviewer checks correctness of the executable expressions with respect to the abstract
expressions, as well as the specification-based coverage criteria corresponding to the test
strategies used. For more discussion on test expressions and coverage criteria please refer
to [5].

 6

3.1 Correctness Arguments
Most of the steps in the formal V&V can be carried out automatically. But, some steps
cannot be automated and require human interaction and guidance. We argue that use of
informal correctness arguments to deal with steps that cannot be automated results in an
improved and more affordable verification process. Our approach draws on the work of
Britcher [18], where the key program attributes such as topology, algebra, invariance, and
robustness are defined for procedural programs. The correctness arguments are presented
as a series of questions that should be answered by inspectors and authors. The idea of
the questionnaire follows the Active Design Review approach developed by Parnas [19].
For instance, for a given correctness argument that cannot be checked automatically, a
model analyst may provide and record an informal proof. During the review, the
inspector is expected to challenge the correctness arguments using a carefully designed
review process. In our case, we consider correctness arguments that encompass and
extend the criteria defined in [18]: validity, traceability, optimality, robustness, well-
formedness, completeness and consistency.

3.2 Sample Review Questions
A review process is preceded with a discovery of user requirements documented by the
reviewer. Even before reading the exhibits, the reviewer needs to make an initial analysis
of the requirements. The discovery of the requirements must go beyond the traditional
meetings that take place at the beginning of reviews in order to present the system. The
reviewer needs to build an informed and independent opinion about user requirements
under review. Then, it is easier for the reviewer to challenge the rules defined in the
exhibits and discover possible gaps, omissions or inconsistencies. In this phase, the
reviewer should answer the following questions:

1. What are the main business rules, the properties and invariants characterizing the
system?

2. What are significant scenarios underlying functionalities of the system?
3. What are exceptional conditions under which the system is expected to function?

After the discovery phase, the reviewer starts the actual review by reading the exhibits
and examining the correctness arguments. The following are among the questions that
need to be answered:

1. Do the exhibits provide a complete coverage of the business rules, the properties
and invariants characterizing the system?

2. Are the exhibits consistent with user requirements, and do they derive naturally
from the user requirements?

Next, the reviewer considers traceability argument. Some of the questions that may be
answered include:

1. Which aspects of the model have changed, and which ones remain unchanged
after refinement?

3 Structured Design Reviews

 7

2. Are relationships between abstract and concrete features defined adequately and
consistently?

As achieving traceability is not sufficient, checking optimality of the refinement is
important. The argument of optimality may be analyzed by answering questions like:

1. Are representations chosen during design refinement efficient with respect to
requirements?

2. Are there better alternative solutions?

Well-formedness arguments can be analyzed automatically using the PrUDE tool. The
main goal of the reviewer is to identify potential syntactic inconsistencies. Consistency
arguments are the broadest arguments among the correctness arguments defined so far.
The goal of the reviewer is to check that there are no contradictory requirements involved
in the models under review. The following are some of the questions that should be raised
during robustness checking:

1. What are the normal conditions under which the system operates?
2. What are the exceptional and abnormal conditions related to the system operation?
3. Do the exhibits handle all exceptions and abnormal conditions?

The set of sample questions given in each step are not complete, and they are rather
meant to illustrate types of questions that should be answered in each step.

3.3 Review Process
Defining an efficient review process requires selection of a rigorous development process,
in which the steps and modeling artifacts are precisely specified. We use a development
process consistent with the Rational Unified Process (RUP) [16] that is driven by use
cases. Use cases are identified and prioritized by their degree of criticality at the
beginning of the development process. The process proceeds iteratively starting with the
most critical use case. At the end of iteration, stable software artifacts handling specific
aspects and risks of the system are produced. Subsequent iterations are built on the
previous ones by assessing and revising corresponding risks. The review activities can be
performed at the major milestone within iteration and discovered errors should be fixed
before the next iteration starts. Moreover, review comments are used in planning the next
iteration. We use a hybrid unit of inspection that combines the traditional document-
centric approach with the architectural approach proposed by Laitenberger et al. [17]. The
key architectural building blocks, namely the use cases, are used as units of inspection,
and within a use case we organize inspection around different documents.

As shown in Figure 1, major activities in the review process are organized into four
phases (the rectangular boxes) each of which is based on a specific document:
requirements, analysis, design, and test documents describing scenarios underlying the
use case under consideration.

 8

Figure 1: Review Process

User Requirements Review: Review activities in this phase include checking
completeness and consistency arguments. Completeness refers to checking whether or
not useful information is missing from a model by checking that every functional and
quality requirement is covered at least by one use case. For every use case, the reviewer
must check that every possible scenario is captured by a description of event flows. The
reviewer manually checks consistency of the use case descriptions with user requirements.

Analysis Model Review: Analysis model is derived from textual descriptions of use
cases. It consists of business rules; set of sequence/collaboration diagrams describing
scenarios, class diagrams, and possibly state diagrams. In analysis model review, three
correctness arguments are checked: consistency, well-formedness and validity. After
consistency of the analysis model is manually checked and discovered defects are fixed,
the model is input in to the PrUDE tool, where well-formedness and validity arguments
are checked, successively. Well-formedness and validity are checked by generating PVS
semantic models automatically. Then, the reviewer establishes these properties by
discharging conjectures by invoking the PVS prover in a batch mode. Most of the
conjectures can be discharged automatically using PVS proof strategies implemented in
the PrUDE tool.

 9

Design Model Review: Design models are obtained by successively refining analysis
models. A design model consists of a class diagram, a set of interaction and statechart
diagrams, a static structure diagram, a deployment diagram, and design traceability
documentation. Review of design models consists of checking consistency, traceability,
robustness and optimality arguments. Design traceability is documented by briefly
describing the changes made to the analysis model to obtain the design model. The
document may describe how design classes are related to analysis classes by defining
retrieval functions, and if necessary, informal refinement proof. Design traceability
documentation is produced by a designer, and challenged by a re-viewer.

Test Data Review: Artifacts submitted to a reviewer consist of test cases generated and
expressions used to generate them. The role of the reviewer is to establish correctness of
the expressions, by checking accuracy of system representation. The inspector needs to
check that the coverage criteria for specification-based testing strategies used to generate
the test cases are met.

The integrated approach presented in the sequel is automated by a tool suite called
PrUDE1 (Precise UML Development Environment) [20]. The formalisms and notations
underlying the PrUDE platform are the UML [4] and the PVS (Prototype Verification
System) [9] and their respective tools. Model-checking and proof-checking are based on
the PVS toolkit that is invoked in batch mode, whereas models are created using a UML
CASE tool. The interface of the PrUDE tool to a UML CASE tool is based on the XMI
[21] format. Since most of UML CASE tools support model export in the XMI format,
the PrUDE platform is UML tool vendor independent, making it easily adaptable to
existing software development environments. A major strength of the PrUDE tool is that
it allows developers to deal with UML models they have created while semantic models
generated from the models are processed at the back-end. This is achieved by identifying
proof strategies that allow automated verification of system properties based on the
underlying semantic definitions. Figure 2 shows architecture of the PrUDE platform. The
rectangular boxes represent V&V steps, whereas the ovals show artifacts. An input to the
PrUDE tool is a requirement specification expressed in UML, and augmented with
business rules expressed in OCL [12]. A corresponding PVS specification is generated
automatically and serves as a basis of rigorous analysis. When a valid UML model is
obtained after a series of V&V steps, a designer may refine the model to achieve an
implementation of the system. The resulting program code can be tested with the PrUDE
tool.
Test cases are generated from valid UML specifications obtained after the series of V&V
steps. They are derived from various constraints related to the model, e.g. invariants, pre-
and post-conditions. The current version of the PrUDE tool provides a test case generator
and a test execution component for Java programs. If a proof attempt fails, a PVS log
message that can be interpreted and traced back to the UML specification is generated.
Although the log message is sufficient to indicate the source of errors in the UML

1 The current version of PrUDE v1.2 can be downloaded from www.isot.ece.uvic.ca

4 Automation

 10

specification, in the future we plan to implement a parser that extracts textual ”English-
only” messages from PVS log messages.

Figure 2: Architecture of the PrUDE Platform

5.1 Study Setup and Results
To illustrate feasibility of our approach, we have conducted a small experiment on the
development of a critical system that provides a secured patient document service (PDS).
The main functionality of the PDS system is to provide secured accesses to patient
medical records worldwide. The system is required to provide security, i.e. it must
provide authenticity, integrity, confidentiality, and authorization. In the sequel we briefly
summarize major aspects of the experiment to show feasibility of the approach. The

5 Feasibility Study

 11

experiment involved a group of six graduate students with varying background in
modeling techniques and formal methods.
Three of them have industrial background and played the role of reviewers. The
remaining participants were in charge of developing UML models. The result of the
experiment shows that it is possible for a designer of a critical application, with a little
knowledge of mathematical logic, to get the best out of graphical modeling techniques
and formal methods: design using a visual notation, and design rigorously by taking
advantage of the features provided by structured review and formal analysis techniques.
Review of user requirements was done on the full document, which contains eight use
cases. Subsequent review steps were conducted on sample use cases selected from the
most critical ones. The analysis model involves eight business rules, six sequence
diagrams, a statechart diagram, and a class diagram. The design model consists of six
sequence diagrams, a statechart diagram, a class diagram, a static structural diagram and
a collaboration diagram describing subsystems and their relationships, and design
traceability documentation. We used a small test set consisting of fifteen expressions and
twenty test cases.

We noticed that the effectiveness and cost of detecting defects vary significantly based on
several factors: types of defects detected; whether the defects are detected manually or
automatically; whether the detection method follows precise rules or is driven by
experience and intuition, or both; backgrounds of the reviewers; and the size and
complexity of user requirements.
Based on the cost and ease of detection, we group the defects discovered into five
categories.

1. Defects discovered manually by using precise and systematic guidelines, e.g.
consistency of UML diagrams, and test coverage analysis, which were easily and
rapidly detected.

2. Defects discovered manually, which require some logical thinking and for which
no clear guidelines were provided, e.g. consistency of business rules etc. These
defects were discovered with a little more effort than the previous ones.

3. Defects discovered manually, which require some intuition and experience, and
for which no strict guidelines were available, e.g. optimality, and robustness.
These defects took more time to discover, and only half of them were detected.

4. Defects discovered automatically using the PrUDE tool, e.g. well-formedness of
UML models, which were detected easily and quickly.

5. Defects related to validity were discovered using the PrUDE tool, but required
some prior intuitive work from the reviewers in defining appropriate conjectures.
The conjectures can be checked using the PVS proof strategies implemented in
the PrUDE tool in less than a minute.

Though the size of the study materiel and the number of the participants don’t allow us to
draw quantitatively significant statistical conclusions, the results obtained, i.e. the number
and kind of defects discovered are promising and consistent with our expectations.
In the future, we extend the experiment to a larger number of users and extend the study
materiel to cover an entire system model.

 12

5.2 The Patient Document Service (PDS)

5.2.1 Summary of the PDS Requirements

Overview: Binkadi Life, an insurance company needs to rapidly create an online
healthcare marketplace. The central and initial component of that marketplace would be a
patient document service (PDS) that provides support for the company 1,000,000 insured,
care providers, benefit coordinators and agents. The initial version of the PDS will only
maintain securely patient medical records and make them available to authorized persons
worldwide. Subsequent versions are expected to expand the basic functionalities with
several new services.

The goal of Binkadi Life is to deliver the services of the PDS at no additional cost to its
insured. That'll allow them to increase their market share. At the same time they don't
want to increase their operational costs. Hence it is essential for them to lower the
development cost and to minimize the product support cost. Due to the highly
competitive insurance market, it is also important for them to bring the product to the
market the earliest possible, and to reduce the installation time (e.g. fastest deployment).
Other important concerns include the following.

- Scalability: the system must scale to manage millions of users and work in
complex computing environments.

- Availability: the system must have no more than 1 hour per month of down time.
- Performance: The system must be able to respond quickly to user requests, unless

the network connection is broken (in which case the user should be notified).
- Portability: the system must work in diverse and complex computing

environments involving various platforms and technologies.
- Ease of learning: the time for 90% of the buyers to learn (through supplied step-

by-step instructions) how to use the first time the system must not be more than
10 minutes.

The system must also be fully integrated into existing enterprise security infrastructure.
More specifically the PDS will reuse an existing secured database that provides the list of
the primary users of the system (e.g. the company’s customers). The database provides
also the list of registered doctors. This database is maintained by an already existing
customer management system.

Functional Requirements: The main function of the PDS system is to provide secured
accesses to patient medical record worldwide. The system must provide special
protection features dealing with suspicious users and disclosure of unauthorized
information. The actors involved in this system are the patients, patients' relatives and
friends, doctors, and site administrators. The main resources to be secured are medical
records of patients. A patient may choose a unique family doctor who is automatically
granted the right to read and modify medical records of the patient. Only authorized
doctors can read or modify a medical record. Every doctor is solely responsible for the
modification that he made to the medical record database, and the system is expected to

 13

enforce this responsibility. An authorized doctor is a registered doctor that a patient has
chosen either as his family doctor or as "guest" doctor, e.g. a specialist, or for travel
reasons or unavailability of family doctor etc. The patient is the only person that is
allowed to choose his own doctor. A patient may have read access to his own medical
record, but he cannot modify it. He may grant read access to his friends and family
members. The site administrator is the only person who can create, delete, read and
modify a patient record. The system is required to be secure, i.e. it must ensure that
authenticity, and integrity, confidentiality, and authorization are always preserved.
Additionally, the company would like to be able to use the system to maintain statistics
about customers’ behaviors in order to adapt its services to their needs, and also to send
them some advertisements when they are using the system.

5.2.2 UML Specification

Use Case Diagram: We identify 10 use cases and 6 actors, which are described in the
following.

Actors:

- User: a user can be a patient, a patient’s friend, a chosen and registered doctor, a
security officer; any authorized person.

- Patient: primary user of the system; corresponds to a regular customer of the
company.

- Doctor: registered doctor specified by the company, and possibly selected by a
patient.

- Friend: friend or relatives of a patient, is granted by a patient the right to access
his record.

- Company database: provides the list of patients and registered doctors.
- Administrator: maintains the system.

Use cases:

- Registration: allows a user to register with the system; the first time, the user
access the system using a default password delivered to him. Then during the
registration, a new password is created that he must use for subsequent access to
the system. Default registration of administrator, patients and doctors is made
directly by the administrator using the company database. Default registrations of
friends are made directly by patients.

- Transaction management: receives the user requests and handles them. The
requests may consist of creating, getting, querying, updating or deleting a medical
record. The request may be granted or denied, in which case an appropriate
message is sent back to the user.

- Transaction processing: consists of the actual processing of the requests received
from the user.

- Access control: checks whether any request or action by a user is legal or not. Its
role consists of checking the request against the security policy, make appropriate
decision, and enforce that decision.

 14

- Login: identifies and authenticates a user in order to check whether he is an
authorized user of the system. If that’s the case, a session object carrying the
security credentials of the user is created and the user is granted access to the
system. Otherwise, access is denied and the user is kept out of the system.

- Auditing: any critical actions must be logged by specifying the type of action, the
author and time.

- Administration: provides a series of functions that allows the administrator to
maintain the system.

- Fault management: provides a series of functions that allows system monitoring,
fault detection and recovery; sends notification to the user in case of
unavailability.

- Maintain Statistics: maintain information related to the habits of the users of the
system.

- Advertise: send advertisement to the users.

Figure 3: Use Case Diagram

The 10 use cases identified above cover the most important requirements. However, not
all the use cases are significant for the design of the architecture. We must consider only
use cases that involve the most important risks. These include use cases that are
important for the user or the main purpose of the system, or that cover the quality and
non-functional requirements. Secondary, ancillary use cases (e.g. features that are nice to
have), or optional use cases are in general not significant for the architecture. In this
perspective, we keep only 8 of the 10 use cases identified; the selected use cases are
represented in the use case diagram given in Figure 3. Use cases Maintain statistics and

 15

Advertise cover secondary requirements, which are not fundamental for the user. Hence
they may be postponed and dealt with later.

Interaction Diagrams: Each use case involves one or more scenarios, each of which can
be described using interactions diagrams (e.g. sequence or collaboration diagrams).
Figure 4 depicts a scenario underlying the Login use case. The user identifies him by
specifying his userid and password; the information is forwarded to the document server,
which checks them against the security policy via a security manager. If the access is
granted, a session object is created that carries the security profile of the user. If access is
denied the user is notified by sending him an appropriate message.

Figure 4: Sequence diagram describing login scenario

Class Diagram: The class diagram provided in Figure 5 depicts structural components of
the system described above. The Patient, Doctor, Administrator and Friend classes
represent potential users of the system. These classes are subclasses of the Person class
that describes a set of common attributes. The DocProvider class manages the access to
and delivery of medical records, which are described by the MedicalRecord class. The
SecurityProfile of a user is defined as a set of AccessRight associated to the Person class.

 16

Figure 5: Class Diagram-Analysis

 17

Statechart Diagrams: Statechart diagrams are provided for classes exhibiting significant
dynamic behavior. For instance, the statechart diagram shown in Figure 6 describes
dynamic behavior of the class DocProvider. The system starts in an initial state where
security parameters are initialized. Then, it moves to an idle state where it waits for
requests from users. When a request is received, the security profile of the user is
checked and the request is either served or rejected.

Figure 6: Statechart Diagram for Class DocProvider

Architecture: The general architecture of our system is based on the generalized
framework for access control (GFAC)) that defines an architectural pattern for access
control-based systems [22].
The collaboration diagram in Figure 7 depicts how subsystems collaborate in order to
achieve a basic scenario in which a user makes a request to the system. The request is
received by the enforcement facility, which submits it to the decision facility for
verification. The decision facility refers to the security rules in order to check the validity
of the request. Based on the response of the decision facility, the enforcement facility
either executes the request or rejects it. In either case, the security information base must
be updated.

 18

Figure 7: Collaboration among major subsystems

Figure 8 describes the hardware and network topology and shows how the major
components are deployed on the hardware infrastructure.

5.2.3 Complementary Semantics
The standard UML notation provides only a partial specification of the system. The UML
specification produced needs to be extended by providing complementary semantics for
the elementary features (e.g. state, actions, conditions etc) and properties involved using
language like the Object Constraints Language [12] or any other mathematical or textual
languages. We define in the following the complementary semantics for the statechart
shown in Figure 6 using OCL. The context of the expression is a DocProvider object.

3.1: check(profile,resource)

<<subsystem>>
Enforcement facility

<<subsystem>>
Decision facility

<<subsystem>>
Resources

<<subsystem>>
Security rules

<<subsystem>>
Security information

3: result:=check(profile,resource)

3.2:[result=true] execute(request) 3.2 update

5: update

<<subsystem>>
User services

2: request(profile,resource)4: result()

User

1: request

 19

Figure 8: Deployment Diagram

Predicates associated to states
predIdle(): Boolean
 self.status = true AND self.connection = false

predConnection: Boolean
 self.status = true AND self.connection = true AND self.users → notEmpty

predWaiting(): Boolean
 self.status = true AND self.service = false

predProcessing(): Boolean
 self.status = true AND self.service = true AND self.sessions → notEmpty

predSecurityViolation(): Boolean
 self.status = false AND self.securityOK = false

predRecovery(): Boolean
 self.status = false AND self.securityOK = true

Predicates associated to guard conditions
predAccept(sp:SecurityProfile): Boolean
 exists (sp | self.securityDirectory.includes(sp) AND
 sp.owner.userid=uid AND
 sp.owner.password = pwd)

*
<<processor>>
ClientServer

Deploys

4..*
<<processor>>
DBServer

Deploys

DirectoryServer.db

<<Internet>>

<<Intranet>>

2..*
<<processor>>

AppServer

Deploys

DocumentServer.class

 20

Predicates associated to actions
predReqOK(sp:SecurityProfile, ac:AccessRight, req:Request): Boolean
 exists ((sp, r, req) | self.securityDirectory.includes(sp) AND
 sp.owner=req.source AND

 sp.right.includes(ac) AND
 ac=req.action)

predCreateSession(): Boolean
 exists (self.sessions→size = self.sessions→size + 1)

5.2.4 Business Rules
The UML business model needs also to be augmented by defining the business rules.
These rules can be expressed using OCL. We give in the following some examples of
business rules.

Rule1: A patient cannot create, delete or modify his own medical records.
context Patient
inv self.profile.right → forAll(r | not (r = r.create or r.modify or r.delete))

Rule 2: A doctor cannot create or delete a medical record.
context Patient
inv self.myDoctor.profile.right → forAll(r | not (r.create or r.delete))

Rule 3: A doctor that has not been chosen by a patient (as a family doctor or a friend),
cannot access the patient's medical record.
context MedicalRecord
inv self.owner.myDoctor → (excludes(doc)) implies not
 self.owner.myDoctor.profile.right →
 exists(r | ((r.resource=self) and

 (r.read or
 r.modify or
 r.delete or

 r.addDoc or
 r.removeDoc or
 r.addFriend or
 r.removeFriend))))

Rule 4: Only a site administrator can create or delete a medical record.
context MedicalRecord
inv self.person.profile.right →

exists (r | (r.create or r.delete)) implies
 person.asType(Administrator))

Rule 5: A patient can read only his own medical record unless another patient has chosen
him either as a "friend" or a doctor or he is a site administrator.
context MedicalRecord

 21

inv self.patient.profile.right →
exists(r | (r.resource =self and r.read) implies

 (self.patient=self.owner or
 owner.myFriend → includes(patient) or
 owner.myDoctor → includes(patient))

5.3 Structured Reviews
Well-formedness and consistency arguments, as we already mentioned, may be checked
automatically using the PrUDE toolkit. This is performed after the PVS semantic model
corresponding to the UML model is generated. The remaining arguments are checked
manually or semi-automatically. In the rest of this section, we show, by examples, how
this can be conducted.

In order to check the traceability argument the reviewer will first examine the
relationships between the structural and behavioral elements defined in the specification
and the design documents. The analysis model provided in Figure 5 is refined into a new
design model given in Figure 9. Instead of having several classes for different users of the
system, Person, Patient etc., there is only one user class, namely the UserManager class
which carries the same set of attributes as Person class, in addition to a role attribute that
corresponds to the specific role played by the user.

The SecurityManager class is a new class that performs all necessary security checks
before executing a request. There is also a standard directory service represented by
DirectoryService class. Since the configuration of the model has changed, ensuring
design traceability is important. That consists of showing that all information mentioned
in the abstract model can be found in the design model.

For instance, the designer may consider that there is a direct correspondence between
DocProvider class in the abstract model and SecurityManager class in the design model.
The same correspondence may also exist between Patient, Doctor, Friend, Administrator
and User. The correspondence is documented by providing retrieve functions that relate
abstract and concrete representations. We use the following notation for retrieve function:
retr: [Rep → Abs], where Abs is the abstraction and Rep is a representation. For instance,
for the SecurityManager class, the following retrieve function can be defined:

retr: SecurityManager → DocProvider
context DocProvider
sm: SecurityManager
inv self = retr(sm) implies
 (self.records = retr(sm.records) and
 self.securityDirectory = retr(sm.securityDirectory) and
 self.users = retr(sm.users))

 22

Figure 9: Class Diagram (Design)

The retrieve function for the classes is defined in terms of the retrieve functions of their
attributes that must also be defined. The retrieve function can be as simple as the identity
function or more complex in case where the data types involved are modified. For
instance, the above retrieve function establishes correspondence between the records
attributes in, respectively, the DocProvider and SecurityManager classes. However, their
data types are different (see the respective class diagrams). The abstract records attribute
is defined as a set of MedicalRecord whereas the refined one is defined as a vector of
MedicalRecord, for example, an array. The retrieve function for the attribute records may
be defined in this case as follows:

retr(sm.records) = {sm.records[i] | mid 0 <i < sm.records.size}

*{seq}right

directory

access

* user

*{vector}records

*{}securityDirectory

*{seq}right

*{vector}session

 UserManager
- name: string
- password: string
- userid: string
- address: Address
- age: Date
- ssn: nat
- role:{patient, doctor, friend,
 Administrator}

MedicalRecord

 SecurityManager
- status: boolean
- connecting: string
- servicing: string

- user: Person
- securityDirectory:SecurityProfile
- session:Session
- records: MedicalRecord

+ register()
+ login(string:uid, string:pwd)
+ sendRequest(req: Request)
+ recvResult(res: Result)
+ close()
+ abnormalClose()
+ detectViolation()
+ analyzeViolation()

 SecurityProfile
- owner: Person

 AccessRight
- read: boolean
- modify: boolean
- delete: boolean
- create: boolean
- addDoc: boolean
- removeDoc: boolean
- addFriend: boolean
- removeFriend: boolean

 Session
- owner: Person

sendRequest()
logout()

DirectoryService

 23

The abstract attribute records are defined by the retrieve function as the set of elements
contained in the concrete representation vector. In order to establish correctness of the
representation, an adequacy proof obligation may need to be discharged. The following
proof obligation states that the retrieve function must be total:

context DocProvider
inv self → forAll(dp | SecurityManager →

exists(sm | retr(sm.records) = dp.records)))

Figure 10: Dynamic Reconfiguration in the Patient Document Service

The proof obligation is discharged straightforwardly by providing the following informal
constructive argument:

Given a finite set, it is always possible to arrange elements of the set into an array. The
set will represent the collection of elements associated to that array.

The use of informal constructive arguments to discharge simple proof obligations is
encouraged in [23]. Although the data representation chosen by the designer seems
adequate, the reviewer may raise some concerns about its optimality. From the
requirements, it appears that the attributes records where all medical records are stored
should allow efficient searching. The question will be whether representing the records as
a binary tree would be more efficient than using just a vector?
A robustness issue raised during the review process was due to the fact that the patient is
the only person allowed to choose his doctor. How about the case when a serious accident
has happened to the patient at the other end of the world where the authorized doctors
listed in his record cannot reach him, and the patient is not in condition to choose a local
doctor?
Another robustness issue is due to the assumption that there could be some security
violations since no system is absolutely secure. Hence, we need to design a mechanism
that allows the system to discover, analyze and recover from security violations. The

 24

statechart diagram given in Figure 6 by specifying appropriate recovery mechanisms
already addresses this concern.

The review also established that the design was not valid, because it failed to describe,
consistently, user requirements that state the fact that a patient must not be able to modify
his own record. A patient can be a doctor by profession in which case he can choose
himself as a "guest" or family doctor, and grant himself the right to modify his own
record, as the above system design does not prevent him from doing so. To be valid the
business rules should be rephrased stating that a patient may choose, as a family or a
"guest" doctor, any person who is a registered doctor, except himself or herself. An
additional business rule may be stated as follows:

Rule 6: If a patient is a doctor, (s)he cannot choose himself as his doctor.

context Person
inv (self.asType(Patient) and
 self.asType(Doctor)) implies
 self.myDoctor → excludes(self))

Another possible solution is redesigning the model in order to incorporate some dynamic
reconfiguration features as shown in Figure 10. The solution adopted in Figure 10
describes different roles a Person may play, with interfaces Patient, Doctor,
Administrator and Friend. In this way, the interfaces may be constrained to prevent the
same object of the Person class from playing roles that may violate the requirements.

5.4 Formal Verification
A reviewer can check well-formedness and validity arguments using the PrUDE tool.
Importing the XMI file generated from the UML models does this, and PVS semantics
models are automatically generated based on the XMI file. The business rules are
translated into PVS and systematically integrated with the PVS semantic models using
the property editor. Then, the model is checked based on the UML well-formedness rules,
whereas invoking the PVS type-checker in a batch mode checks type-correctness.
Finally, invoking the PVS theorem-prover checks every system property.

5.4.1 Statechart Diagrams
Figure 11 shows a snapshot of the PVS semantics generated for DocProvider’ statechart
diagram in PrUDE; the lower window is a log area where reports generated from the PVS
tools are displayed. Figure 12 shows a snapshot of the property editor through which
complementary semantics are inserted. The log areas show reports of well-formedness
and type checking.

In order to check validity of the specification, the reviewer draws and checks conjectures
based on requirements. An example conjecture suggested by one of the reviewers enabled
us to discover an interesting bug in the statechart diagram of Figure 6. The conjecture is
expressed as follows:

 25

Rule 7: A user cannot logout unless (s)he is connected.

Figure 11: PVS Semantics Generation Using PrUDE

The reviewer invoked the theorem-prover to discharge the conjecture. The proof was
unsuccessful as depicted in Figure 13. A counterexample described as a PVS debugging
message was then returned; the counterexample is shown in Figure 14.

The message is expressed in the form of unproved sequent with several antecedents and
no consequent to be proved. In such a case, either there is a conflict in the antecedents, or
the antecedents are not sufficient to prove the sequent. Lines {-1} to {-4} refer to the
simple state Connected. Line [-5] refers to a transition instance (labeled internally) tr!1
whose source and target is the state Connected, with triggering method logout, empty
guard condition, and action clearSession. This corresponds to the self-transition
associated to the state Connected. Lines [-6] to [-11] refer to the firing of transition tr!1.
At this stage the reviewer inferred that the firing of transition tr!1 leads to an inconsistent
state, and decided to examine closely the transition and its meaning as defined in the
statechart diagram.

In a normal execution, the concurrent state Connecting contains a logical inconsistency.
If we follow the single process of handling a user connecting to the Document Server we
can determine the following normal operations:

1. The thread responsible for user connection is started in the Idle state.

 26

2. If the thread receives invalid login request from unconnected user, it remains in
the Idle state.

3. If the thread receives a login request with valid user ID and password from
unconnected user, it enters the Connected state.

4. After the user is connected the thread responsible for handling user connections
returns to the Idle state.

5. When the thread in the Idle state receives a logout request from a connected user,
it handles the request and remains in the Idle state.

Figure 12: Property Editor

These operations seem consistent with a running server. The transition that appears
logically inconsistent when compared to the implementation of the system is, as indicated
by the counterexample, the transition from the Connected state to itself triggered by a
logout request.
In reality, a logout request from a user who is not connected should not be processed.
This problem could occur, if for example, the implementation code did not properly set
the connection property of a client after it has successfully logged in; rather, it is set
before completion of the connecting code. Combine this with conditional logic that
checks the connection status of the client before allowing the logout operation to proceed.
Although the detected error might seem trivial, it is, however, an example of typical
errors that can easily be skipped over during manual review.

 27

Fig. 13: Unsuccessful Proof attempt for Property 7.

5.4.2 Sequence Diagrams
Figure 15 shows a snapshot of the PVS specification automatically generated using the
PrUDE toolkit from the UML sequence diagram shown in Figure 4.

Some essential conjectures suggested by reviewers are security requirements for
authorization, authentication, accountability, and availability. An instance of suggested
authorization property states that a non-discretionary authorization policy is needed in
order to control PDS users' access to patient records.

Rule 8: Unauthorized access to a patient record is not allowed. Access to a patient record
by an already authenticated user of PDS must be protected by the enforcement of an
authorization policy.

An example of proposed accountability property is stated as the following property:

Rule 9: Every access to records must be logged, including unauthorized attempts to
access the information.

Analyzing the interactions involved in the system, such as the one modeled by the
sequence diagram given in Figure 4 can check such kind of properties. In the classical
message sequence charts (MSC), deterministic ordering of events can be guaranteed by
using the general ordering mechanism. The UML sequence diagram, however, does not

 28

support such a mechanism, and hence a need for formal semantics that ensure
enforcement of this sort of properties of systems. The sequence diagram shown in Figure
4 describes interactions among instances of Person, DocProvider, and MedicalRecord
classes. It constrains the messages to occur in the order they appear in the diagram from
top to bottom. The diagram does not, however, state whether any of the messages must
occur or may occur. To model dependencies among messages, one needs formal
representation of sequence diagrams. Suppose that, in Figure 4, the message create occurs
only if messages reg_ok and login occur in that order. This property cannot be specified
by the graphical notations and induces a strong need for formal semantics.

For instance, in our semantic definitions, Rule 8 is equivalent to the following:

For every valid trace of the sequence diagram (cf. fig. 4), an occurrence of data access
event must be preceded by a successful registration and authentication. In other words,
in a valid trace, the events sendRequest and recvResult must be preceded by both the
reg_Ok and login_Ok events.

Figure 14: Counterexample for Property 7.

 29

Figure 15: Semantics Generated Using PrUDE for a UML Sequence Diagram

System requirements are specified as predicates. To ensure that the system specification
fulfills the requirements, appropriate conjectures or theorems are stated and discharged
by invoking the PVS prover. The requirement specified by Rule 8 is stated as follows:

th1: THEOREM
 FORALL e: Event, t: Trace: (e = sendRequest OR e = recvResult) IMPLIES
 ((t ∈ traces(loginseq) AND e ∈ t) IMPLIES {reg_Ok, login_Ok\} ⊂
prefix_upto(rank(e,t),t))

The security requirement characterized by rule 8 can be implemented in several ways.
The most critical case is when an authorized user is tampering with records without
leaving a trace of his identity. Users must not be allowed to access patient records after
they have invoked the logout operation. This is stated as follows:

th2: THEOREM
 FORALL e, t, sqdr: (t ∈ traces(sqdr) AND e ∈ t AND e=logout)

 IMPLIES isucc(e,t) ⊆ {e|e=login}

Where the isucc(e,t) function returns the set of immediate successors of the event e in
trace t. Invoking the PVS theorem-prover in a batch mode and using the proof strategies
defined previously discharges the above theorems. Figure 16 shows a snapshot of the
proof-checking report for rule 8 in PrUDE.

 30

Figure 16: Proof Checking Report for Rule 8

5.5 Model-based Testing

5.5.1 Test Case Generation
Due to space limitations, we present in the sequel only results related to one test strategy,
namely the transition test strategy. At the implementation level, test cases are collected
and generated based on the constraints and invariants involved in the UML and OCL
specifications. We present in this section an example of test case generation involved in
object domain analysis for method login() of the class DocProvider based on the
transition test strategy.

There are 2 transitions involving method login(): a transition that originates from state
Idle and arrives in state Connected, and a self transition that loops in state Idle. Based on
the predicates associated with the elements of each transition, we identify the two pre-
post condition pairs associated to method login() as follows:

DocProvider::login(uid:string, pwd:string):true
 pre1: predIdle() and predAccept()
 post1: predConnected() and predCreateSession()

DocProvider::login(uid:string, pwd:string):false

 31

 pre2: predIdle() and not predAccept()
 post2: predIdle()

Due to the object variables involved in the pre and post condition pairs, the object domain
analysis technique is used for test case generation. Having replaced the predicates
involved with their respective referenced expressions based on the rules mentioned
previously, we obtain the following expressions:

 ∀ dp: DocProvider, ∃ sp ∈ dp.securityDirectory, owner: Person
 pre1 = (dp.mode = = true ∧ dp.connection = = false) ∧
 ~(dp.sp.owner.userid = uid ∧ dp.sp.owner.password = pwd)
 post1= (dp.mode = = true ∧ dp.connection = = true) ∧
 (dp.sessions.size()’ = dp.sessions.size()+1)

 ∀ dp: DocProvider, ∃ sp ∈ dp.securityDirectory, owner: Person
 pre2 = (dp.mode = = true ∧ dp.connection = = false) ∧
 (dp.sp.owner.userid = uid ∧ dp.sp.owner.password = pwd)
 post2= (dp.mode = = true ∧ dp.connection = = false)

where dp.securityDirectory is a set of SecurityProfiles and dp.owner is a Person object.

After that, we need to break the preconditions into DNF expressions, but, in this case, the
preconditions are already in normal formal. Test cases can be defined by analyzing the
domain of the object variables involved. The instances of these objects are first built
based on the object decision tree, and then, our extended domain matrix technique is used
to identify and organize the test cases. Table 1 from (a) to (d) shows the construction of
the instances for objects Person, AccessRight, SecurityProfile and DocProvider,
respectively. Table 2 shows the generated test cases for the pre-post condition pair 1 of
the method login, and Table 3 shows the generated test cases for the pre-post condition
pair 2 of the method login. We obtain in total eight potential test cases for both pre-post
condition pairs. But only three of the eight test cases, which make the postcondition true
(indicated by a “TRUE” in the Expect Results row), correspond to effective test cases.
The remaining potential test cases falsify the preconditions, so we can’t conclude
anything after executing them.

Table 1(a): Instances For Class Person
Instance Variable

No. Object Var. Name userid password address ssn age
1 p1 Alex alex camry 40 Bay St. 1234567 20
2 p2 Alex alex camry 40 Bay St. 1234567 20
3 p3 Alex alex camry 40 Bay St. 1234567 20
4 p4 Alex alex camry 40 Bay St. 1234567 20
5 p5 Alex alex camry 40 Bay St. 1234567 20

 32

Table 1 (b): Instances For Class AccessRight
Instance Variable

No. Object Var. Read modify create delete
addFrien
d addDoctor

1 ac1 TRUE FALSE FALSE FALSE TRUE TRUE

2 ac2 TRUE FALSE FALSE FALSE TRUE TRUE
3 ac3 TRUE FALSE FALSE FALSE TRUE TRUE

4 ac4 TRUE FALSE FALSE FALSE TRUE TRUE

5 ac5 TRUE FALSE TRUE FALSE TRUE TRUE

Table 1 (c) Instances For Class SecurityProfile
Instance Variable

No. Object Var. owner right
1 sp1 p1 ac1
2 sp2 p2 ac2
3 sp3 p3 ac3
4 sp4 p4 ac4
5 sp5 p5 ac5

Table 1 (d) Instances For Class DocProvider
Instance Variable

No. Object Var. mode connection service securityStatus securityDirectory
1 dp1 TRUE FALSE False False sp1
2 dp2 TRUE FALSE False False sp2
3 dp3 TRUE FALSE False False sp3
4 dp4 TRUE FALSE False False sp4
5 dp5 TRUE FALSE False False sp5

 Table 1: Construction of the Instances for Object Variables

Domain Matrix For method login() in Class DocProvider
(for pre/post pair 1)
Boundary Test Case
Instance
Var. Condition type 1 2 3 4

 33

on dp1

dp.mode==true&&

dp.connection==false&&

dp.sp.p.userid=uid &&

dp.sp.p.password=pwd off dp2 dp3 dp4
Dp Typical in

on
 off

Uid Typical in alex alex smith smith
on

 off
Pwd Typical in camry honda camry honda
Expected Results TRUE FALSE FALSE FALSE

Table 2: Test Cases for the Pre and Post Condition Pair 1 of Method Login

Domain Matrix For method login() in Class DocProvider
(for pre/post pair 2)
Boundary Test Case
Instance
Var. Condition type 1 2 3 4

on dp3 dp4
dp.mode==true&&

dp.connection==false&&

dp.sp.p.userid!=uid off dp1 dp2
Dp Typical in

on
 off

Uid Typical in alex Alex smith smith
on

 off
Pwd Typical in camry honda camry honda
Expected Results FALSE FALSE TRUE TRUE

 Table 3 Test Cases for the Pre and Post Condition Pair 2 of Method Login

5.5.2 Test Data Review
The review of test data consists of checking the expressions used to generate the test
cases in the PrUDE tool. Although the test expressions look simple, they are still subject
to errors. The role of the reviewer is to ensure their correctness with respect to their
specification, i.e. the abstract specification.
The coverage criteria guiding the review are specification-based testing. For the transition
test strategy, we define three coverage criteria, namely transition coverage, DNF
coverage, and condition coverage.

 34

- Transition coverage criterion is defined in terms of the state diagram of a class.
At a minimum, a tester should test every transition in the state diagram at least
once. Transition coverage is analogous to statement or branch coverage at the
code level.

- Precondition coverage criterion requires that every DNF involved in a
precondition be covered by at least one test case. A DNF consists of one or
several elementary boolean conditions.

- DNF coverage criterion is based on the rationale that each condition should be
tested independently without interference from other conditions. In order to
achieve that, the test set must include at least one test case that makes all
conditions true, and test cases that falsify each condition at least once.

5.5.3 Test Execution
After reviewing them, test data are used as basis for test execution. Test execution starts
at the class level by testing the individual methods involved in the class. Individual
methods are tested by creating an instance of the class and setting the test values (i.e. an
initial state) using the reflection API. After calling the method on the modified instance,
we get the new state of the object still using the reflection API, and then finally evaluate
the post conditions.

Figure 17: Test Case Generation Using the PrUDE Toolkit

The general approach to do so consists of writing test drivers or scripts. However, in our
approach as mentioned earlier, the Java reflection mechanism is applied to directly
modify and access object internal states. Also, this has been implemented in the PrUDE

 35

toolkit for executing a Java program automatically. Figure 17 gives a snapshot of
generated test data and test execution results for the test cases shown in Table 2 for
method login.

Structured review is an effective way of finding certain types of deficiencies and bugs in
programs, hence improving the level of dependability of software products significantly.
We argue that the efficiency of structured reviews can be improved if combined with
model-based and automated verification. On the other hand, formal verification
techniques such as theorem-proving, supported with tools, are more practical than manual
inspection for verification tasks related to well-formedness and validity checking.
However, there are classes of correctness arguments such as optimality and robustness
that cannot be fully mechanized, and for which structured review is more appropriate.
This work builds on the strengths of the two techniques to develop an integrated
development framework. We show how structured reviews and formal V&V can be
combined effectively into a single development platform to complement one another. As
argued in [2], the formalization process is one of the most time consuming aspect of
using formal methods in system development. By defining formal semantics, and
automatically generating formal specification from graphical semi-formal models, we
considerably reduce the difficulties underlying the use of formal methods.

References
[1] I. Sommerville, Software Engineering, Addison-Wesley, 5th edition, 1996.
[2] S. Easterbrook, J. Callahan, and V. Wiels, “V&V through Inconsistency Tracking and
Analysis,” in the Proc. of International Work-shop on Software Specification and Design,
Ise- Shima, Japan, April 16-18 1998.
[3] M. Lawford, P. Froebel, and G. Moum, “Practical Application of Functional and
Relational
Methods for the Specification and Verification of Safety Critical Software,” in the Proc.
of Algebraic Methodology and Software Technology, 8th International Conference,
AMAST 2000, Iowa City, Iowa, USA, May 2000, T. Rus, Ed. 2000, vol. 1816 of Lecture
Notes in Computer Science, pp. 73–88, Springer.
[4] OMG, “OMG Unified Modeling Language Specification, version 1.3,” June 1999,
OMG standard.
[5] I. Traor´e and D. B. Aredo, “Enhancing Structured Review with Model-based
Verification,” IEEE Transaction on Software Engineering (to appear), August 2004.
[6] D. B. Aredo, “A Framework for Semantics of UML Sequence Diagrams in PVS,”
Journal of Universal Computer Science (JUCS), Know-Center in cooperation with
Springer Pub. Co., Joanneum Research and the IICM, Graz University of Technology,
vol. 8, no. 7, pp. 674–697,
July 2002.
[7] I. Traor´e, “An Outline of PVS Semantics for UML Statecharts,” Journal of Universal
Computer Science (J. UCS), vol. 6, no. 11, pp. 1088–1108, 2000.
[8] M. Belaid and I. Traor´e, “The Precise UML Development Environment (PrUDE)
Reference Guide,” Tech. Rep. ECE01-2, Department of Electrical and Computer Eng.,
University of Victoria,

6 Conclusion

 36

April 2001.
[9] S. Owre, N. Shankar, J. Rushby, and D. W. Stringer-Calvert, PVS Language
Reference, version 2.3, Computer Science Laboratory, SRI International, Melon Park,
CA, USA, September
1999.
[10] R. B. France, A. Evans, K. Lano and B. Rumpe, “The UML as a Formal Modeling
Notation”, Computer Standards & Interfaces, vol. 19, pp. 325–334, 1998.
[11] S. Owre, J. Rushby, N. Shankar, and F.V. Henke, “Formal Verification for Fault-
tolerant Architectures: Prolegomena to the design of PVS,” IEEE Trans. on Software
Eng., vol. 21, no. 2, pp. 107–125, February 1995.
[12] J. B. Warmer and A. G. Kleppe, The Object Constraint Language: Precise Modeling
with
UML, Addison Wesley Longman Inc., 1999.
[13] M. Y. Liu and I. Traor´e, “PVS Proof Pat-terns for UML-Based Verification,” in the
Proc. of ECBS workshop on Formal Specification of Computer-Based Systems
(FSBCS02), Lund, Sweden, April 10-11, 2002.
[14] P. Stocks and D. Carrington, “A Framework for Specification-Based Testing,” IEEE
Trans. on Software Engineering vol. 22, no. 11, 1996.
[15] B. Beizer, Software Testing Techniques, Van Nostrand Reinhold, 2nd edition, 1990.
[16] P. Kruchten, the Rational Unified Process, Addison Wesley, Sept. 1999.
[17] O. Laitenberger, C. Atkison, M. Schlich, and K. El Emam, “Using Inspection
Technology in Object-oriented Development Projects,” Technical report NRC/ERB-1077,
NRC, Canada, June 2000.
[18] R. N. Britcher, “Using Inspections to Investigate Program Correctness,” IEEE
Computer,
November 1988.
[19] D. L. Parnas and D. M. Weiss, “Active Design Reviews: Principles and Practices,”
Journal of Systems and Softwares, pp. 259–265, 1987.
[20] I. Traor´e, “An Integrated V&V Environment for Critical Systems Development,” in
the Proc. of 5th IEEE International Symposium on Requirements Engineering, Toronto,
Canada, August
2001.
[21] F. Keienburg and A. Rausch, “Using XML/XMI for Tool Supported Evolution of
UML Models,” in the Proc. of the 34th Annual Hawaii International Conference on
System Sciences (HICSS-34), Maui, Hawaii, January 3-6, 2001, IEEE Computer Society.

[22] M. D. Abrams, S. Jajodia, H. J. Podell, Information Security – An Integrated
Collection of Essays, IEEE Computer Society Press, Los Alamitos, CA, 1995.
[23] C. Jones, Systematic Software Development using VDM, 2nd ed. Englewood
Cliffs,NJ: Prentice-Hall, 1990.

The PVS semantics generated for the statechart diagram in Figure 6 and the sequence
diagram in Figure 4 are provided in the directory named appendix. The archive also
contains the proof steps for the example properties checked in this report.

Appendix

