
Norsk Regnesentral / Norwegian Computing Center ICSSEA 2000, December 20001

A UML-based Architectural Framework
for Web-based Information Systems

Egil P.Andersen
Norwegian Computing Center

P.O.Box 114, Blindern, 0314 Oslo, Norway
Tel: +47 22 85 25 94, Fax: +47 22 69 76 60

Egil.Paulin.Andersen@nr.no

Norsk Regnesentral / Norwegian Computing Center ICSSEA 2000, December 20002

Distributed Information Systems - SynEx and SINAI

Distributed Information Systems play a key role in the business of many companies and organisations.
They may need an ability to manage and maintain business information from several heterogeneous
information sources, where authorised users can access and share this information with few constraints
as to where they are located geographically, and sometimes also the equipment they are required to
possess.

Web-based information systems - provide access to information from "anywhere" to "anyone".

SynEx - Synergy on the Extranet
To support continuity of care between organisations, and make relevant patient information readily
available, there is a growing trend towards shared care.
Synapses and SynEx are EU projects which aims to provide healthcare professionals with seamless
access to patient records and related information, where different record parts may reside in different
EPR information systems, nationally or internationally.

The ultimate goal for electronic patient records is to provide complete access to any part of any record
to any authorised healthcare professional in a secure way.

SINAI
Healthcare information systems are open and generic - the kind of information they must be able to
manage is not fully known at design-time. They evolve over time and must be designed for this.

SINAI is a UML-based architectural framework for web-based information systems. It supports the
development of web-based generic and extendable distributed information systems, but without being
generic itself; i.e., it allows for domain-specific specialisation, customisation and optimisation. It also
supports seamless integration of information from heterogeneous data sources and legacy systems.

Norsk Regnesentral / Norwegian Computing Center ICSSEA 2000, December 20003

SynEx -
Technical

Architecture

Oslo Synapses Server

client/server technology independence

Client-side integration
of distributed

healthcare recordsSynEx
Client

http

Application specific Application independent

Offline

Client-side
Application
components

XML
Parser

Cache Manager

GUI

Data
Provider

Cache

any web
browser

Simple Client

HTMLSynExML/
XSL

XML formatted request

MTS - Microsoft Transaction Server

DB interface
(TSQL

Stored Procedures)

SynExML generation

OSS
Oslo Synapses Server

SQL Server
DB

(healthcare
records)

(Visual C++/ATL)

OSSCOM-
ServerVC
(stateless,
COM, dll)

SynEx
XSL

SynExML
DTD

various plain
HTML pages

HTML

IIS - Internet Information Server

web server interface -
session information

ASP - Active
Server Pages

(VBScript)

(Visual C++/ATL)

OSSWeb-
ServerVC

(stateless,
COM, dll)

OSSSession-
ManagerVC

(stateful,
COM, dll)

Data Layer

Application LayerWeb Server Layer

O
L
E

D
B

Data Independence
Layer

DCOM

httpSynEx Client:
ActiveX components
in Internet Explorer

Request/Response:
XML over http

Oslo Synapses Server:
IIS/ASP on Win/NT
and COM components
under MTS

Norsk Regnesentral / Norwegian Computing Center ICSSEA 2000, December 20004

Seamless Integration of
Distributed Electronic Patient Records

SynExML formatted health record information

SynEx
Client

IE5 - Internet Explorer 5

document
browser

DB 1

Synapses
Server A

Geneva

Geneva
Synapses

Server

London

London
Synapses

Server

Dublin

Dublin
Synapses

Server

DB 2 DB n

Oslo

Synapses
Server B

Synapses
Server C

database
distribution

application
distribution

client-side integration
("client distribution")

Open issue - long-term distribution?

Norsk Regnesentral / Norwegian Computing Center ICSSEA 2000, December 20005

Seamless Integration of Distributed Electronic Patient Records (cont.)

Norsk Regnesentral / Norwegian Computing Center ICSSEA 2000, December 20006

SynExML and XML over http (e.g. SOAP)
SynExML

XML has the power to become the independent data exchange format of the future.

An XML DTD, SynExML (SynEx Markup Language), was defined for inter-site exchange of EPR
(Electronic Patient Record) information; i.e., the basis for semantic interoperability between SynEx
components w.r.t. EPR information.

XML over http (e.g. SOAP)
Communication between a client and a server can be formatted as XML over http both ways
(e.g. according to the SOAP (Simple Object Access Protocol) specification).

There are several advantages by this:
• http is a simple protocol with good coverage and few demands on the client

XML, as strings, are well-suited for transmission via http

• Most firewalls are readily configured for common security options dealing with well known
internet protocols and ports. This as opposed to e.g. DCOM or CORBA protocols (IIOP).
In practice, the ability for remote machines to interact via DCOM and IIOP is more limited.
DCOM and IIOP can be well-suited for computers within e.g. a limited area, but not between
"any" remote client and server on the internet.

• XML over http makes the underlying client- and server-side technology transparent to each other.
E.g. the Oslo EPR server is Microsoft based while the Dublin server uses Apache with CGI
scripts.

• XML is likely to be well-suited for mobile clients; e.g. WML is XML.
• There are numerous software tools and systems with good support for XML.

Norsk Regnesentral / Norwegian Computing Center ICSSEA 2000, December 20007

http GET command (QueryString)

http://citroen.nr.no/synexdemo/oss.asp?<OSSrequest>
<Function Name=”RecordInfo">
<Arg Name="User">onordmann</Arg>
<Arg Name=”RecordID">{C7910C91....0000}</Arg>
<Arg Name=”Retrieval">shape</Arg>
<Arg Name="ResponseType">html</Arg>

</Function>
</OSSrequest>

XML over http (cont.)

Norsk Regnesentral / Norwegian Computing Center ICSSEA 2000, December 20008

What is the role of XML?

XML DOM
(Document Object Model)

object structure

XML DOM
(Document Object Model)

object structure

transfer
XML string

<?xml version="1.0"?>
<SynExML Source="Oslo">
<Document Name="User_Access"

RCID="10">
<DataItem Name="HomeItem"

Cluster="26">
......

</DataItem>
</Document>

</SynExML>

What is XML?

The essential characteristic of XML -
XML can be "morphed" from a string of text into a structure of objects, and vice versa.

• Well-suited format for technology independent information transfer - a string
Particularly between "any" web client and a server

• Most platforms can support XML as strings

• When creating or receiving an XML string it can be accessed and operated upon as any other kind
of object structure, with an interface of functions, and also supporting events.

Norsk Regnesentral / Norwegian Computing Center ICSSEA 2000, December 20009

What is the role of XML? (cont.)

What is XML not?

XML is not a modelling language and should not be used as such.

For example - it was a very time-consuming process in SynEx for every partner to agree on
a common XML format. Many changes were made along the way, and more are to be
expected, and for each change XML parsing code had to be changed.

SINAI - proper modelling methods should be used for information modelling

XML schema "explosion" - a general problem

If every small group or business sets out to define its own XML schema, this will lead to an
"explosion" in the number of non-interoperable schemas and standardisation will be
jeopardised.

Making changes in XML parsing code can be expensive; i.e., it is too much to expect that
XML schema specific code will be fully encapsulated so that changes due to future
standardisation can be confined and implemented with little cost.

BizTalk, OASIS and XML.ORG are all initiatives to support XML schema repositories
where organisations can publish their XML schemas for the purpose of sharing XML
formats and develop industry standards.

SINAI - XML purely a technical means for communication - a single XML format

Norsk Regnesentral / Norwegian Computing Center ICSSEA 2000, December 200010

Standardised use of XML based on UML
To assure meaningful client-server communication they need a common understanding regarding which
requests can be made by the client, and what kind of information will be returned from the server.

This can be based on meta-information about UML models; i.e., XML transferred between clients and
servers can use a single XML schema, with two major sub-schemes:

• information on object instances of a UML model (actual object relationships, attribute values, etc)
or UML model information (meta-information - classes, structural and behavioural properties, etc)

• how to invoke object methods/functions according to a UML model

A client receives not only information on a particular structure of objects, but also their business rules,
their methods, etc.

Application developers will be presented with object models and object interfaces that adhere to SINAI
defined UML conventions - both when manifested as XML or IDL component interfaces.

A unified way of working with objects made according to models that may well be very domain specific.

Benefits:
• Foundation for client-server common understanding remains the same regardless of model changes

• Client-server communication infrastructure remains unchanged

• Information and application integration -
different systems adhere to the same conventions regarding their structural and behavioural
properties and interfaces (XML and IDL component interfaces)

Projects like SynEx can focus more on conceptual issues and less on technology and platform

Norsk Regnesentral / Norwegian Computing Center ICSSEA 2000, December 200011

Generic and Extendable Information Systems

Sharing and seamless integration of distributed electronic patient record - but for their shapes only!

”Shallow”
integration

Record

Folder

Doc. Doc. Doc. Doc. Doc. Doc. Doc. Doc. Doc.

RecordRecord

FolderFolderFolderFolderFolderFolder

SiA Oslo RH Oslo Dublin

? ? ?? ? ???

”Deep”
integration

Record

Folder

Doc. Doc. Doc. Doc. Doc. Doc. Doc. Doc. Doc.

RecordRecord

FolderFolderFolderFolderFolderFolder

SiA Oslo RH Oslo Dublin

EPR documents can be considered dynamically extendable sets of site-specific and standardised
models in combination. We need to extend and integrate domain specific models in a manner
that cannot be foreseen at design time.

Healthcare information systems are open and generic - the kind of information they must be able to
manage is not fully known at design-time. They evolve over time and must be designed for this.

Norsk Regnesentral / Norwegian Computing Center ICSSEA 2000, December 200012

Generic and Extendable Information Systems (cont.)

SINAI:
Not large, monolithic (unmanageable...) UML models, e.g. for different projects or domains.

Numerous “micro” models (role models - see below) for different areas of concern.
Models can be distributed, integrated and reused in a seamless manner regardless of origin.

Hypothesis: for electronic patient records, a separate model can be made of its "record shape and
hyperlink" structure (e.g. nested tree-structures with local or remote hyperlinks); separate
models are made for various kinds of record content (parts of medical documents); other
models for authorisation and access control, presentations (various devices), and so on.

Typical situation SINAI
Company

Company

Company

UML
model

Project/
Domain

UML
model

UML
model

UML
model

UML
model

UML
model

UML
model

Company
Company

Company

UML
model

Role
model

Composition

Norsk Regnesentral / Norwegian Computing Center ICSSEA 2000, December 200013

The SINAI Unified Role Model for
Distributed Information Models

Censor

Supervisor

Exam-
author

LecturerPerson

subject

object id
(GUID)

role instances
Student

Person

A SINAI based system will have many of the characteristics of a
generic system, but without being generic itself - it will not
predominantly consist of generic software components.

It will consist of dynamically composable
units of information, and dynamically
configurable application components.

A SINAI data layer is defined by a
set of information models that each
offer roles that can be instantiated
into role instances and
dynamically composed
into persistent, stateful
information objects ("subjects").

Information objects can "play" different
roles during their lifetime.

When an object starts playing a role its properties are
added to the object, and when it stops playing it, its properties
are removed; i.e., object properties are defined by current roles played.

Thus roles allow for objects to dynamically acquire new properties, and
later release them.

ElementaryRole

Name : String

*

1..*

Function

Name : String
ReturnType : String

FunctionArgument

Name : String
DataType : String
InOutCode : Short

*

1

RoleContainment

IsMandatory : Boolean

+1..*Association +1

Model

Name : String
Prefix : String
MajorVersion : Short
MinorVersion : Short
MicroVersion : Short

11

*

UniquenessConstraint

**

1..*

*

CompositeRole

Name : String1..*

1

1..*

**

1

+Sub
*

+Super
* +Base

*

+Derived
*

…and a number of
business rules

IsAbstract : Boolean

Information Model for
SINAI Unified Role Model

Norsk Regnesentral / Norwegian Computing Center ICSSEA 2000, December 200014

Basic concepts

The SINAI Unified Role Model for
Distributed Information Models (cont.)

SINAI role models are an extension of a subset of UML Class Diagrams -
can use UML notation; e.g.

Association

Elementary
Roles

Composite
Role

Uniqueness constraint

borrower lender date amount

object name

object address

is drawn borrower lender date amount

object name

object address

Person

String

Date Money

borrower

lender

Person
name : String
address : String

…functions...

Loan
date : Date
amount : Money

…functions...

1

1

*

*Role Inheritance

Dynamic role play and role constraints

ExamAuthor

Lecturer
SupervisorCensor

Person

role dependencies

super-role
sub-roleis equivalent to

b qB QAP ap

AB

P ap b q QAB

role inheritance

base-role
derived role

’ Role creation
refOID = CreateObject() ’return GUID
……...
refCensor = CreateCensor(refOID)

Norsk Regnesentral / Norwegian Computing Center ICSSEA 2000, December 200015

The SINAI Unified Role Model for
Distributed Information Models (cont.)

Inheritance and association subtype relationships (the main difference from NIAM/ORM)

n’ary associations for e.g. multi-dimensional arrays

owner day hour entryStudent

Hour

String

Day

Visual Basic: refStudent.FindDay(”Tuesday”).FindHour(”17.30”).SetEntry = ”math”
strEntry = refStudent .FindDay(”Tuesday”).FindHour(”17.30”).GetEntry

Role inheritance is different from role dependencies.
When inheriting - for subtype related associations - only the most specific association is inherited.

A problem in COM IDL -
function returntypes are ”occupied”...

student course

student courseStudent

Law
Student

Comp.Sc
Student

Law&C.S.
Student

Course

Law
Course

Comp.Sc
Course

has 1 association

has 1 association

has 1 association

has 2 associations

LawStudent (C.S.Stud. same) does not
inherit the Student association since it
has itself a more specific association.

student course

(many-to-many)

(a student has one course)

(many-to-many)

Norsk Regnesentral / Norwegian Computing Center ICSSEA 2000, December 200016

SINAI Information Models vs Application Models

applies to

Information models
(defining roles)

Application models
(defining application

components)

applies toapplies to

SINAI Information Models define stateful objects residing on persistent storage.

Their their interfaces contain functions for creating, removing, updating and retrieving role instances.

The data layer implementation of these functions handle information specific, but application
independent, constraints.

SINAI Application Models are service-oriented (e.g. originating from Use Cases) -
concerns a particular set of related services that can be applied to particular information models.

Application layer objects are mostly "stateless" objects as required for scalability and good
performance in large-scale information systems.

Component interfaces defined by both information and application models will be model specific -
no generic interfaces.
Hence manual customisation and modification is possible at the level of individual, model specific
functions - e.g. complex business rules usually require non-trivial manual intervention at a detailed,
model specific level

PS: Conceptual work remains on
SINAI application models

Norsk Regnesentral / Norwegian Computing Center ICSSEA 2000, December 200017

Standardised SINAI Architectures
SINAI models can be used to generate parts of the model specific server code - and ("fat") client side
components => saves some coding, and more standardised (product line) architectures

MetaModel of
SINAI Information

Models

(authoritative info.
model source)

stored procedure
interface

Database
Schema

database
tables, keys, etc

OLE DB wrapper classes
(if Win /NT platform)

IDL specification

SINAI Models (e.g. Rose, Visio, …)

SINAI
Information

Models

SINAI
Application

Models

MetaModel of
SINAI Application

Models

MetaModel of
Relational

Database Schema

some SINAI
information model

some SINAI
application model

SINAI Databases Generated Code

save

generate

Application
Metamodel
Database

Information
Metamodel
Database

RDB Schema
Metamodel
Database

some Information
Model

Database

(authoritative
app.model source)

save

generate compute (1)

generate (2)

compute &
generate

(1,2)

”fat” client cache
IDL + implementation

IDL specification

server application layer
IDL + code shell

IDL specification

”fat” client application
IDL + code shell

IDL specification

generate

implements

Norsk Regnesentral / Norwegian Computing Center ICSSEA 2000, December 200018

ProcedureArgument

ArgumentName : String(80)
DataType : String(80)
IsOutput : Boolean

StoredProcedure

ProcedureName : String(80)
ReturnsRecord : Boolean
BodyText : Text

*

1 +argument

*+owner

1

View

ViewName : String(80)
ViewCondition : String(255)

DBSchema

SchemaName : String(30)
SchemaPrefix : String(10)
MajorVersion : Short
MinorVersion : Short
MicroVersion : Short

1

*

+owner 1

+procedure *

*1

+view

*

+owner

1

Index

IsClustered : Boolean
IsUnique : Boolean

DBKey

KeyName : String(80)

ForeignKeyUniqueKey

IsPrimary : Boolean *1

+fkey

*

+target

1

Table

TableName : String(80)

0..1

*

+view
0..1

+table
**

1

+table *

+owner 1

1

* +table

1+column

* 1 *

+owner

1

+dbkey

*

Column

ColumnName : String(80)
DataType : String(80)
IsNull : Boolean

*

1

+column *

+owner 1
0..1

*

+dbkey
0..1

+column
*

*

0..1

+column
*

+index
0..1

Standardised SINAI Architectures (cont.)

Metamodel of
Relational Database Schema

(an information model)

Norsk Regnesentral / Norwegian Computing Center ICSSEA 2000, December 200019

Standardised SINAI Architectures (cont.)

stored
procedure
interface

Database

Some typical ”fat” client-server scenarios. ”Thinner” clients imply more processing on the server.
Notice the distinction between ”read” vs ”write” interfaces (operations) for transaction handling.

XML
over
http

RI - Read Interface WI - Write Interface

Check in/check out style Client Server Application Layer Server Data Layer

Long, optimistic transaction style

server
application
component

server
DB

cache

XML files

XML files

XML files

client
app.

comp.

client
app.

comp.

client
cache

(off/online)

client
cache

(off/online)
update
cache

RI

WI

RI

DB
write

controlWI

WI

RI

WI

WI

refresh
cache

client
write

control

load

save

load

load

check- in

write

generate

save

check-out

transfer fetch

write request (e.g. multi-
statement long opt.trans.)

convert XML
to/from cache

convert XML
to/from cache

Network

generate

Norsk Regnesentral / Norwegian Computing Center ICSSEA 2000, December 200020

Summary

SynEx
With state-of-the-art internet technology it is relatively simple, technically, to achieve sharing
and seamless integration of distributed electronic patient record shapes (record structure).

Patient records are quite complex information entities. Their documents can be considered
dynamically extendable sets of site-specific and standardised models in combination.
We need to extend and integrate domain specific models in a manner that cannot be foreseen at
design time. A pure, generic solution has proven insufficient/too complex.

SINAI
The SINAI project aims to demonstrate that

• UML can be used to achieve a basic common understanding between parties involved
(clients, servers, components, applications) that makes it easier to achieve integration
and interoperability of information and applications.

• UML can be used to standardise the use of XML and avoid XML schema "explosion".

• Code generation from UML models can be used to achieve more standardised architectures
(at least for a particular product line).

• Model and component integration via the combined use of role modelling techniques and
component technology can be used to support the development of generic and extendable
information systems.

