
Note no DART/05/09
Author Wolfgang Leister

Date 18th August 2009

CreolE — A pragmatic
extension to Creol

Wolfgang Leister

Norwegian Computing Center
Norsk Regnesentral (Norwegian Computing Center, NR) is a private, independent, non-
profit foundation established in 1952. NR carries out contract research and development
projects in the areas of information and communication technology and applied statisti-
cal modeling. The clients are a broad range of industrial, commercial and public service
organizations in the national as well as the international market. Our scientific and tech-
nical capabilities are further developed in co-operation with The Research Council of
Norway and key customers. The results of our projects may take the form of reports,
software, prototypes, and short courses. A proof of the confidence and appreciation our
clients have for us is given by the fact that most of our new contracts are signed with
previous customers.

Title CreolE — A pragmatic extension to Creol

Author Wolfgang Leister

Quality assurance Bjarte M. Østvold

Date 18th August 2009

Publication number DART/05/09

Abstract
The present document describes extensions to the modelling language Creol which are
implemented using the cpp pre-processor. The purpose of these extensions is to support
constants, dependent compilation, and to provide convenience functions that make mod-
elling easier.

Keywords CreolE , Creol , CREDO, cpp

Target group Developers of Creol models

Availability Open

Project CREDO

Project number 320362

Research field Formal Methods

Number of pages 7

© Copyright Norwegian Computing Center

3

1 Introduction

While modelling biomedical sensor networks in Creol (Leister et al. (2009)) we recog-
nised the need for a extensions of Creol (Kyas (2009)) from in order to make Creol more
suited for large models. The extensions proposed here are based on the GNU cpp pro-
gram (see man cpp). In the following we discuss these extensions using important best
practice cases.

2 Best practice

The following sections contain the additional features of CreolE , and give a motivation
for their use. CreolE stands for “Creol Extended”.

2.1 Named Constants
Standard Creol does not allow for named constants. However, in some occasions named
constants result in better models in the sense of less modelling errors. For example, to
model messages exchanged in a biomedical sensor network we need to model several
message types, denoted by an Int. When the model gets large, it is more suitable to use
named constants in order to avoid using the wrong constant.

As an example we show how to define named constants in the BSN model, with five
different message types:

#define _mt_Payload 1
#define _mt_RREQ 2
#define _mt_RREP 3
#define _mt_RERR 4
#define _mt_Flooding 99

We use the named constants as shown in the following snippet:

var theMessageType: Int;
theMessageType :=get(tmsg,"MessageType");
if theMessageType = _mt_Payload then

INC(numPayloadSent);
processOutgoingPayloadMessage(tmsg;success);

End;

2.2 Named Types
In the BSN model we use the data type Map[String,Int] to model messages. How-
ever, in large models it is impractical to write this type definition at all occurrences due
to maintenance consts, e.g., when changing the representation. Therefore, we introduce
named types as shown in the following snippet:

#define AMessage Map[String,Int]

CreolE — A pragmatic extension to Creol 4

...
op processMessage(in tpm: AMessage; out success: Bool) ==

var theMessage: AMessage;
theMessage := tpm;
...

2.3 Conditional Inclusion
The cpp allows for conditional inclusion or exclusion of parts of the code. This is neces-
sary to maintain the code of large models. Using comments to switch on/off parts of the
code is rather impractical, especially when making larger changes such as re-defining a
data type throughout the entire model. Therefore the standard use of #if and #ifdef is
supported.

Note that switching code on/off can lead to the so-called semicolon-problem in Creol ,
which is illustrated in the following snippet which will cause a compilation failure when
_USE_COUNTER is set to 0.

#define _USE_COUNTER 1
if existRouteToDst then

await network.singlecast(tpm,nexthop;scresult);
#if _USE_COUNTER

counter := counter + 1
#endif
end

In order to solve this problem we use the skip command and the extended End and Else

statements.

2.4 Extended End and Else statements
The extended End and Else statements, written with an initial capital letter, are used to
avoid the semicolon-problem of Creol , which occurs especially for conditional compila-
tion. In practice, a skip statement is inserted before the command in minuscules. There-
fore, using the extended statements you always must set a semicolon at the end of the
previous Creol command. The use of the extended statements is shown in the following
snippet.

#define _USE_COUNTER 1

if existRouteToDst then
await network.singlecast(tpm,nexthop;scresult);

#if _USE_COUNTER
aCounter := aCounter + 1;

#endif
Else

bCounter := bCounter +1;
End

CreolE — A pragmatic extension to Creol 5

Note that the extended Else and End statements also allow for empty branches, as the
following compilable code snippet shows:

#define _USE_COUNTER 0

if existRouteToDst then
#if _USE_COUNTER

aCounter := aCounter + 1;
#endif
Else

bCounter := bCounter +1;
End

2.5 File Inclusion
The cpp allows for including other CreolE files into the code using #include, which is
also supported in CreolE .

2.6 The Macros DEC, INC, INSERT, and REMOVE

When using counters Creol offers an assignment as follows:

counter := counter +1;

Quite frequently, when copying and modifying code, one of the two variables when in-
creasing a counter is forgotten to be changed by accident, resulting in strange results, and
tedious debugging of the model. In order to avoid this we introduce the macros INC(v)
and DEC(v), as well as INSERT(m,e,c) and REMOVE(m,e) for inserting or replacing, and
removing elements in maps, sets, etc.

3 How to Use CreolE

The CreolE extension needs the GNU cpp, the file std.creole, and changes in the make-
file. The latter two are shown in the following.

3.1 The File std.creole

The CreolE extension contains the file std.creole which provides the necessary macros.

#ifndef _STD_CREOLE
#define _STD_CREOLE 1
#define INC(A) A :=A + 1
#define DEC(A) A :=A − 1
#define INSERT(A,E,C) A :=insert(A,E,C)
#define REMOVE(A,E) A :=remove(A,E)
#define Else skip else
#define End skip end
#endif

CreolE — A pragmatic extension to Creol 6

In the CreolE code you must include the file std.creole by the following statement:

#include <std.creole>

3.2 Changes to the Makefile
When using CreolE the Makefile should include the following extra definitions. Note
that the first first line, using the option -P should be used for older Creol compilers prior
to Creol version 0.0n.

#CPP = cpp −I . −P −C
CPP = cpp −I . −C

%.creol : %.creole
$(CPP) $< −o $@

4 Experiences with CreolE

CreolE was used to port a Creol model of over 1000 lines of code (Leister et al. (2009)) from
one data type using classes for messages to another data type using maps. To do this the
porting needed to be done on parts of the code at a time. We chose to port each mes-
sage type at a time, which turned out to be the right portioning. Using CreolE porting
the model was done in about one working day. Additionally, CreolE now allows us to
include several test scenarios that can be switched on/off, or be included from files.

In order to align the line numbers in error messages to the .creole files the creol-
compiler has been extended to interpret line markers generated by cpp, which is sup-
ported by compiler version 0.0n and newer.

We hope that CreolE is found useful by developers of Creol models. Note that CreolE
is work in progress, and new features might be introduced as experiences with modelling
in Creol and CreolE progress.

References

Kyas, M. (2009). Creoltools. Available for download at http://heim.ifi.uio.no/

~kyas/creoltools/.

Leister, W., Liang, X., Stam, A., Klüppelholz, S., and Jaghoori, M. (2009). Credo deliver-
able 6.3: Final modelling. 1. 03. 2009 (t30).

CreolE — A pragmatic extension to Creol 7

http://heim.ifi.uio.no/~kyas/creoltools/
http://heim.ifi.uio.no/~kyas/creoltools/

	Introduction
	Best practice
	Named Constants
	Named Types
	Conditional Inclusion
	Extended End and Else statements
	File Inclusion
	The Macros DEC, INC, INSERT, and REMOVE

	How to Use CreolE
	The File std.creole
	Changes to the Makefile

	Experiences with CreolE
	References

