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Abstract: The literature on automatic analysis of remote sensing data has so far been dom-
inated by methods that are applied to single images. With the ever-increasing number and
diversity of earth observation satellites, it steadily becomes more important to be able to ana-
lyze compound data sets consisting of several images, possibly acquired by different sensors.
The observed pixel values in optical images with several spectral bands are well modeled by
a multivariate normal (Gaussian) distribution for each ground cover class, and the same model
can be used for the joint distribution of a set of overlapping multispectral images. Likewise,
multivariate complex circular Gaussian distributions can be used for single-look complex radar
images. However, for detected radar images (amplitude or intensity) neither marginal nor joint
distributions are normal. In this study we examine different ways of obtaining joint distributions
for detected radar images, and we propose a transformation method that enables incorporation
of inter-image covariance while keeping a good fit to the marginal distributions. The approach
is studied for three different distribution families that are used to model radar image intensities:
Gamma (classes with constant radar reflectivity), lognormal (an approximation) and K (textured
classes with Gamma distributed radar reflectivity).

The approach basically consists of two steps. The marginal densities are assumed to come from
parametric distributions. Based on this assumption, each marginal variable is transformed to
a normal distributed variable. The joint distribution of the transformed variables is assumed
multivariate normal with a certain covariance matrix. Transforming it back to the original scale
will give a joint distribution with dependence, where the initial marginal distributions are not
altered. The parameters of the new joint distribution can be estimated. Assuming marginal
Gamma (or K) distributions and then using the proposed transformation method will give a
flexible joint Gamma (or K) distribution incorporating inter-image dependence. If lognormal
distributions are assumed marginally, the standard joint lognormal distribution appears when
using the transformation method.

The joint distributions produced by the transformation method can e.g. be used in supervised
classification of radar images. Results obtained on various data sets are presented.

Keywords: Radar images, transformation, multivariate distribution, inter-image correlation,
normal scale, dependence.


mailto:baard@nr.no
mailto:storvik@nr.no
mailto:Roger.Fjortoft@cnes.fr

ii

SAMBA /30/03

Target group: All employees

Availability: Open

Project: EOTOOLS, WP2

Project no.: 830110

Research field:Remote Sensing

No. of pages:34

Norwegian Computing Center
Gaustadalléen 23, P.O. Box 114 Blindern, NO-0314 Oslo, Norway
Telephone: +47 2285 2500, telefax: +47 2269 766Qp: //www.nr .no

Copyright(© 2004 by Norwegian Computing Center, Oslo, Norway
All rights reserved. Printed in Norway.


http://www.nr.no

Contents

1 Introduction

2 Multivariate Gamma case
2.1 Wishart distribution . . . . . . . . . ..

2.2 Transformation . . . . . . . . L

3 Meta-Gaussian distribution

4 Classification based on meta-Gaussian distributions

5 Estimation
5.1 Maximum Likelihood . . . . . . . . . . .

5.2  Estimation based on estimating functions . . . . . . . ... o000

6 Test

A Derivatives

B Further results

References

10

10

11

11

13

21

23

23

30

34






Joint distribution of correlated radar images 1

1 Introduction

Earth observation satellites acquire images of the earth’s surface and atmosphere. Com-
pared to optical sensors, radar has the advantage of being able to look through clouds.
Moreover, as a radar provides its own illumination, it is independent of the sunlight and
can record images also at night. Satellite borne radars are generally side-looking, and
the synthetic aperture radar (SAR) principle is used to improve the resolution. The
wavelength is typically of the order of decimeters.

The radar response of a surface is very much dependent on its structure, as well as its
dielectric properties. A piece of surface that is perpendicular to the incoming radar
beam will typically return a relatively strong response back to the satellite. This is for
example the situation when reflectors are installed to calibrate the radar system. At the
other extreme, a plane surface that is not perpendicular to the incoming beam (e.g. a lake
without waves) will reflect little or nothing of the signal back to the satellite. Most natural
surfaces are irregular at the scale of the wavelength, in which case the characteristic speckle
phenomenon can be observed in the resulting image. Speckle is due to the constructive and
destructive interferences of the responses of the elementary scatterers within a resolution
cell, and it results in very strong fluctuations in the observed intensities for a given ground
cover type. Speckle is often modeled as a strong multiplicative noise. The observed
intensity is then the product of the characteristic radar reflectivity of the surface, and
the speckle. Radar images rely on coherent illumination and are inherently complex
(each pixel initially has an amplitude and a phase). However, in many cases only the
amplitude or intensity are available for further analysis. For example, a technique called
multi-looking is often used to reduce the speckle, in which case the phase is lost.

Let us now assume that we have a set of radar images that have been acquired over a
given area, with approximately the same acquisition geometry. The images will generally
appear somewhat different, e.g. because they were:

e not acquired simultaneously (multi-temporal)
e acquired by sensors with different wavelengths (multi-frequency)

e acquired with different polarization combinations (polarimetric)

For a given ground cover class (e.g. a certain kind of agricultural field or forest) the pixel
values of the different images may then be correlated. This correlation can easily be taken
into account for single-look complex (SLC) radar images, where a multivariate complex
circular Gaussian distribution is well suited. However, for amplitude or intensity images
(single- or multi-look) there is no straight-forward way of expressing the joint distribution.

Let us first briefly introduce the basic statistical properties of the pixel values of a radar

image. The complex amplitude of a pixel in an SLC image is the sum of the contributions
ape % of the N elementary scatterers within the resolution cell

N
7 = Ae’? = Zake’j‘ﬁk
k=1
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The real and imaginary parts of the complex amplitude Z = Zyn + jZs can be written as

Zy = Acos(¢)
Zg = Asin(¢).

To proceed further in finding the distribution of Zy and Zg, some assumptions has to be
made. Assuming that the speckle is fully developed (Goodman, 1984), i.e. basically that
the observed surface is irregular at the scale of the wavelength and that the number of ele-
mentary scatterers N within each resolution cell is sufficiently big. From the irregularity
assumption it follows that the amplitude a; and phase ¢ are independent and identic-
ally distributed are reasonable assumptions. Furthermore, it also follows that the mean
E[¢x] = 0 is a reasonable assumption. From the central limit theorem it follows that Zg
and Zg are normal when N goes to infinity and ay cos(¢y) and ay sin(¢y) are identically
distributed for all £ = 1,2, .... Below the distribution of Zy and Zg are assumed normal.
Define Elay] = a and E[a}] = a®. It can then easily be shown that

ElZg] = E[Zs]=0
Bz = B2 =5

and that the real and imaginary parts are uncorrelated because

ElZpZs] = E|Zy|E[Zs] = 0.

As they are also independent we can write

1 _Z%Jrzgx
J2p.25 (2%, 25) = —&¢ I

where R = Na? is called the radar reflectivity of the surface.

Transforming Zy and Zg to polar coordinates A = \/Z2 + Z% and ¢ = tan™(Zp/Zs),
we get

fae(@,y) = fzq,24(xcos(y), zsin(y))J

962
e ® forx>0andye[-n 7]
0 elsewhere

where J is the Jacobi determinant. From this it follows that the scalar amplitude A is
Rayleigh distributed
2 _ a2

falz) = Ee_%’ r>0

and that the phase ¢ is uniformly distributed

for y € [—m, 7]
elsewhere.

o = {7

The distribution of the intensity I = A? is exponential

1

fr(z) = B¢

s

, x> 0.
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Assume [4,..., I} are independent exponentials. The average value of L pixel intensities

_ 1
I = E.Zli (1)

is Gamma distributed

i) = i (5) ew-50ett o 20 @)

where E[I] = R, Var[I] = R?/L, and z is a realization of I. In practise the resolution cells
are generally slightly overlapping, in which case there will be spatial correlation and the
distribution of I is only approximately Gamma. However, in this study we will neglect
spatial correlation and concentrate on the correlation between corresponding pixels in
different images.

2 Multivariate Gamma case

In this section the aim is to explore the possibilities of extending the univariate Gamma
distribution to a multivariate Gamma distribution. There are a number of various forms
of multivariate Gamma distributions, see e.g. (Kotz et al., 2000). Each form will give
different properties. Suppose Yy, Y7, Ys,... Y, are independently Gamma distributed
with with parameters 6y, 61, ... ,0k. Let X; =Yy + Y, for k=1,2,... K. In the general
case, the multivariate distribution of Xi,... , Xk leads to very complicated expressions.
However, §; = 0y = --- = 0, = 1 (each have an exponential distribution) leads to an
expression of the density. The expression involves integration. The restriction on the
parameters is quite strong in such a way that the distribution is not flexible enough. The
other multivariate Gamma distributions defined in Kotz and Johnson do not have easy
expressions for the joint distribution. It is however essential to be able compute the joint
density in order to classify the pixels. If the expression of the distribution is difficult,
simulation will have to be used. One example is shown in the next subsection.

2.1 Wishart distribution

Suppose we have two bands

Iy, 0 o2 p 0 0

| Zg, 0 p o5 0 0

Z = Zs, Ny 01’1l 0 0 o »p
3, 0 0 0 p o3

Marginally, the distribution of I; = A? = (Zg,)? + (Zs,)* ~ exp(20;) for i = 1,2. Let

o2 p)
S, = 1 .
2 (p o3
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Define Z§R = (Zggl,Zgb) and Zg = (Zgl,ZQQ). Then Mgg = (Zg}g)TZgg ~ W(Zlg, 1) and

Mg = (Zg)"Zg ~ W(X15,1) (W is for Wishart distribution). Furthermore, My + Mg ~
W(X12,2). We can write My + Mg as

(Z% )2 + (Z$ )2 Ly, Lyy + L, L I I
M — M _}_M% — 1 1 1 2 1 1
" Zg‘hZ%z + ZSIZ$1 (2%2)2 + (Z§1)2 ]12 [2
The distribution of M is
|M|~'/2 exp{—1trX 5 M}
M) = — T (3)
Amt 2| S0| [L T(3(3 —4)

However, we want the distribution of the diagonal element of M, which is (1, I3). This is
a k-variate chi square distribution. From figure 1 it is possible to see that strong depend-

Figure 1: Density of Wishart distribution when p = 0.1, p = 0.5 and p = 0.8.
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ence between real and imaginary values in the two bands will change the distribution of

(I, I5) dramatically compared to little dependence. A stronger dependence will make the
distribution (I, I3) more concentrated around 0.
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2.2 Transformation

The transformation method that we introduce in this section is based on the following
theorem:

Theorem 1 Let X be a continuous cumulative distribution function F' on R, that is
F(x) = Pr{X < z}. The inverse function F~' is defined by:

Flu)=inf{r: F(z)=u,0<u<1}. (4)

If U is a uniform [0,1] random variable, then F~*(U) has distribution function F. Also,
if X has distribution function F, then F(X) is uniformly distributed on [0, 1].

Proof:
For all x € R, the first statement follows from

Pr{F'(U)<z} = Pr{inf{y: Fly)=U,0<u<1} <z}
= Pr{U < F(2)}
= F(x).

For all 0 < u < 1, the second statement follows from

Pr{F(X)<u} = Pr{X <F'(u)}
= F(F7(u)

= Uu.

Let Y = (Yi,...,Yk)" be multivariate normally distributed with mean vector 0 and
correlation matrix ¥, that is diag(X) = 1. Now, marginally Y, ~ N(0,1), that is Y}
is standard normally distributed. Suppose ® is the cumulative distribution function of
a standard normal distribution. It follows from the results above that the marginally
transformed variables ®(Y}) = Uy is uniformly distributed on [0, 1]. Let G; be any cumu-
lative distribution function, it then follows from the above results that X, = G;'(®(Y2))
has a cumulative distribution function Gj. Let g be the multivariate density function of
X = (Xy,...,Xg)" and g, the marginal density function of Xj,. Define

ye(z) = ©7H(Gr(x)). (5)

and
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It follows that the distribution of the transformed variables (Mardia et al., 1979):

_ 1 _
g(z) = |27X] 1/2€XP{—§?/(9€)E Yy(z)}
g1(z1)
PRI E)) 0
X .
0 9k (TK)

(@~ MGk (vK)))

_ —-1/2 ]‘ -1 . gk(l‘k)
= [2n%] " exp{—5y(2)S y@)}xknlm

T (o o 1278 exp{ () Sy (2)}
= ggk( k) X |27TI\*1/2exp{—%y(l‘)ty(x)}

K
1
= [ oelar) x5 eXp{—§y($)t(E_l — DNy(x)}.
k=1
The result is

g(@) = [ oe(me) x 2712 exp{—%y(aﬁ)t@_1 —Dy(z)}. (7)

Example 1. Marginal lognormal distributed variables
When data are lognormal, the distribution of the logarithm of the data is normal. The
density function and the cumulative function Gy and g, will then be

Gr(zr) = ®((log(x) — pug)/ox), for x >0
¢((log(x) — pux)/0w)

ge(z) = pe , for x >0,

where iy, and oy are the parameters. It follows from (5) that the transformation in this
case gives

ye(z) =

The marginal density of

is lognormal. The result is
a 1
g(x) = [ oelzs) x |27/ exp{—5y(@)' (27" = Ny(x)}
k=1

= 23 exp{ () y()} x 57 el () (57 — Dy())
= 2 S expl () (57— L Dy(a)}

= (2|2 exp{ 5 (los(x) — 1) S5 (os(x) — 1)},
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where 3, = diag{o?,... ,07} and 21/2221/2. g(x) is the multivariate lognormal distri-
bution. When data are normal, the transformation method yields a multivariate normal
distribution.

Example 2. Marginal Gamma distributed variables
Suppose X1, Xs,..., Xk all are marginally Gamma distributed. We want to build in
dependence. Denote the density of X} by

Bk
Q,

ge(w) = g(x; 04, Bk) = F(ﬁk)xﬁk_lexp{—akx}, z > 0. (8)

Denote the cumulative distribution function of X by Gi(z) = G(z; ax, Ok). Define

where Y has cumulative distribution function ® (standard normal). From (13) we get
the joint distribution, which is

o) = TLowtw) < 51772 expl—y(@) (57 — Dy}, (9)

where y(z) is defined in (6). The first term in (9) is a product of independent marginal
gamma densities. The second term in (9), Q(z) = |Z|~ 2 exp{—Ly(2)"(T~! = Dy(x)}, is
a correction term which includes dependence on a normal scale. Note that the diagonal
of ¥ should be equal to 1, i.e., diag(¥) = 1.

Example 3. Marginal K-distributed variables
Suppose X1, Xo, ..., Xk all are marginally K-distributed. We want to build in depend-
ence. Denote the density of X by:

ge(w) = g(x;0om, By, Ly) = \/EF(Li)P(ak) (5\2/5) - Ko_r(BVz), x> 0(10)

where K is here the modified Bessel function of the second kind. The same procedure as
in example 1 and 2 can now be followed.
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Figure 2: a) Gamma without dependence. b) Gamma with dependence. c¢) Scatter plot
of transformed variables.
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3 Meta-Gaussian distribution

We include this section which summarize the previous section. Note that a slightly new
notation will be used. In order to combine different channels which are dependent, we
have to model the dependence between the channels. From the introduction, the marginal
distribution of radar images (pixel intensity values) can be modeled as gamma distributed.
The approach now described is however more general and does not require gamma as
marginal distribution. The idea is to transform each marginal value to Gaussian, measure
the correlation on the Gaussian scale and transform back.

Let X = (X3, ..., X)) be a stochastic vector with marginal density g; for the jth component
X; of X. Let G; be the cumulative distribution function corresponding to g; and ® the
cumulative distribution function for the standard normal distribution. General probability
theory shows that

Y; = &7H(G;(X;)) (11)

is a standard normally distributed variable. The meta-Gaussian approach is to model
dependence between the different components of X through dependence between the
components of Y = (Y3,...,Y,). In particular, it is assumed that Y is a multivariate
Gaussian distributed vector with expectation vector 0 and covariance matrix 3. In order
to keep each Y}, standard normal, we require the diagonal elements of 3 to be equal to 1.
Inverting (11), we obtain

Xj =G H(2(Y))). (12)

Further, by using standard results from probability theory on transformations, the mul-
tivariate density for X is

p

Fos) IS expl =5y ) (57 = DyGen) x [[astesivy), (13)

J=1

where ~y; are the parameters describing the marginal distribution g;, y(x;v)=(y1(z1;71),
o p(@py,)) T and g (x53;) = G5 H(@(2;); ;).

Note that for ¥ = I, the distribution reduces to a product of independent marginals,
making the interpretation of ¥ similar to the correlation matrix for multivariate Gaussian
distributions. Note further that no assumptions is made on g;, except for the inverse of
cumulative distribution G; existing.

In practice, g; will usually be chosen from a parametric family of distributions. If all
g; are Gaussian, the density (13) reduces to a Multivariate normal distribution. If all
g; are lognormal, we obtain the ordinary multivariate lognormal distribution. For g;
being Gamma distributions, we obtain a multivariate Gamma distribution. If some g; are
Gaussian and some are Gamma, a multivariate distribution combining Gaussian marginals
with Gamma marginals is obtained. Such combinations is fruitful when combining optical
with radar images.

In this paper we will concentrate on Gamma marginals and multivariate Gamma distri-
butions.
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4 Classification based on meta-Gaussian distributions

Using the framework in the previous section, we may for each class k € {1, ..., K} define
a multivariate density fx(x) describing the distribution of a vector of observations x from
class k. Define z; to be the class of pixel ¢ and x; observations from pixel i. Neglecting
contextual dependence, the Bayes rule for classification is

Z; = argmax; g fr(X). (14)

Contextual classification methods can also be applied in the ordinary way. Assume e.g.
a Potts model

p(Z) X GZi az+83 I(Zi:Zj)7

where I(-) is the indicator function and i ~ j means that ¢ and j are neighbors in a graph.
Making the usual assumption on conditional independence of observations given classes,
the posterior distribution for z is given by

p(z]x) o p( Hle (x;). (15)

Maximum a posteriori (MAP) estimates of z can be obtained by global maximization
of (15). Such a maximization is recognized as a difficult problem and therefore approxim-
ative algorithms such as the Iterative Conditional Modes (ICM) Besag (1986) are usually
applied. Note however that an efficient algorithm for obtaining global maxima has been
presented in Storvik and Dahl (2000).

5 Estimation

In this section we consider parameter estimation. Assume a training set
T = {X;m',l' = 1, wey, N, k = 1, ey K}

is available where x;; is a vector of observations from class k. All observation vectors are
assumed independent, while dependence between components of the vectors is modeled
through the meta-Gaussian distribution. We further assume the marginal distributions
to be parametric with no common parameters between classes.

Under these assumptions, estimation can be performed separately on each class. Without
loss of generality we therefore only consider one class. We further simplify the notation
by suppressing the class index, i.e. our data is x;,7 =1, ...,n.

One obvious estimation method is Maximum Likelihood (ML). This is considered in sec-
tion 5.1. However, finding the maximum likelihood estimates may be time consuming
because we will have to optimize the whole likelihood wrt the parameters. Therefore, we
will in section (5.2) introduce a simplified approach based on estimation functions (EF)

which is much simpler and faster.
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5.1 Maximum Likelihood

Assume each marginal density g; contain a set of unknown parameters «; and write
¥ = (Y1, --7,). The full set of unknown parameters to be estimated is (v, ).

Assume observations x = (Xy, ..., X,,), where each x; = (2,1, .., 1,). Define

S(y) = %Zy(xﬁ'Y)Y(Xi;'Y)T'

From (13)
log(f(x;7, X)) = = £ log|Z| - Str(Z ™ = DS()
+ zn: zp: log(g; (i3 7v;)) (16)
where o
S0 =3 v ytxi” )

In some cases (i.e for multivariate normal and multivariate lognormal distributions), ana-
lytical expressions for the ML estimates are available. In general, optimizing the log-
likelihood (16) w.r.t. (v, X) is a difficult task. This is mainly due to the restrictions on
3 (positive definite and 1 on the diagonal). Also, there might be some restrictions on ~y
depending on the marginal distributions.

The difficult part is the optimization wrt to 3, because of the constraints involved. These
constraints can be handled by a transformation. Write first
¥ =D(X)2ED(%) 2, (18)

where X is a positive definite matrix and D(X) is the diagonal matrix of 3. Then
automatically the diagonal elements of ¥ are all equal to 1. We can write ¥ = LL”
where L is a lower triangular matrix because X is positive definit. Defining U = L1,
the log likelihood as a function of v and U now becomes

log( (x;, U)) =~ & log [D((UU) ) /2(UT0) " D((UTU) )|
- gtr(D(UTU)1/2UTUD(UTU)1/2 —D)S()
+ 2 2 _1og(g;(isi ;) (19)

The likelihood can be optimized using a standard numerical gradient based routine.

5.2 Estimation based on estimating functions

The ML estimates are cumbersome to obtain. In this section we will describe a simpler
approach.
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The maximum likelihood estimates can be considered as a solution to the equations

dlog(f(x;7,U))

oy =0
ou ‘

Let @ = (7,U). Now, define a estimating function as h(@), where dependence on obser-
vations are suppressed from notation. The estimating equation is defined as

h(6) =0. (20)

In referring to estimating equation we always mean the equation where the estimating
function is set to zero. Furthermore, the estimating function estimator @ of @ is found by
solving the estimating equation in (20). Now, there are a number of regularity conditions
in order for the estimating function estimator to have the similar type of asymptotic
features as the Maximum likelihood estimator (asymptotically consistent and normally
distributed). Define the estimating function h(0) as unbiased if

Eg{h(6)} = 0 V6.
Furthermore, define the sensitivity, variability and Godambe information of h(8) as

5i0) = Ea{ g .+ Vil6) = Eo {1OO)")

and Jn(0) = Si(0)V, 1(0)S4(0),

respectively. The traditional regularity conditions on A is; second order moments ex-
ist, unbiasedness, the sensitivity and variability are non singular for all 8. The quality
of the estimating function estimator is dependent on which estimating function that is
chosen. Because the estimating function estimator has the Godambe information as the
asymptotic variance, the Godambe information measures quality of the estimator.

If the estimating function is set equal to the score function, the maximum likelihood
estimator appears when solving the estimating equation. Let h(0) = (hi(0),h2(0))T.
Define Uy to be the values of U corresponding to independence between components, i.e.
3 = 1. Let us define a particular set of estimating functions h; and hy as

_ Olog(f(x;7, Uo))

) o (21)
o (6) :310g(f(§>1<j;% v) (22)

The estimating function estimator is then found by the solving the estimating equation in
(20). Compared to the ML-equations, the only change is that U is replaced by Uy in the
first set of equations. Since Uy is fixed, (21) only involves 7 and can be solved separately
from (22), which is one of the main advantage of this approach.

Further, let the estimating function in (21) be used to solve a estimating function. This
is equivalent to

9> i log(g;(wij5v;))
O'yj

=0, j=1,...p, (23)
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which corresponds to maximization of the marginal likelihoods for =;.

Assume 4 is the solution of (23). The estimate for U can then be found from the
estimating equation

dlog(f(x;7,U))
ou

This is still a complicated system to solve, but much simpler than the full Maximum like-
lihood approach. Experience with numerical procedures for solving this equation system
shows that the computational gain is very large compared to full Maximum likelihood
estimation. This is partly due to that solving the estimating equation of the estimating
functions in (21) wrt v and (22) wrt to U, the information in the data can be described
by a few sufficient statistics. This is in contrast to full ML estimation where the trans-
formation x — y(x; ) has to be performed for each function evaluation.

=0.

In order to have consistent estimator, one important feature is to show that

9> 1 log(g;(iz;;))
8’)/]»

This equation corresponds to score functions for the marginal likelihoods, and therefore
the statement is valid. Since the second set of equations is equivalent to the ML equations,
also this set of estimation functions will have zero expectation. Using the general theory
of estimation functions Liang and Zeger (1995) it can then be shown that the estimates
obtained by solving the estimating equation of the estimating functions in (21) and (22) are
asymptotically consistent and normally distributed. The asymptotic variances (Godambe
information) for the estimates will differ compared to the ML estimates, but our experience
is that the efficiency loss is small.

El

]=0, j=1,...p.

6 Test

The pixelwise Bayes classification rule (14) has been used to examine whether the use of
meta-Gaussian distributions significantly improves the classification accuracy compared
to marginal Gamma distributions that are assumed to be independent. It should be
stressed that the focus is not on achieving the highest possible classification accuracy, but
on revealing differences between the two approaches.

The data set considered here consists of a multi-temporal series of 6 ERS-1 images of
Bourges, France. The images were acquired with monthly intervals during the summer
season 1993, and 4-look amplitude images were generated from the original SLC images.
The training set consists of vectors of amplitude observations from 21 523 pixels where
the ground truth (class label) is known. The test data set contains 63457 pixels. Table 1
contains the name, label value and number of pixels in training set and test set of each
of the 15 classes.

The training set is used to estimate the parameters of the models and to construct the
classification rule. The test set is used to find the probabilities of correct classification on
the basis of the classification rule.
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We compare two approaches. One consists in assuming that all components are inde-
pendent with Gamma marginals. ML is used to estimate the parameters involved in this
case. We will denote this method by independent maximum likelihood (IML). The other
approach is the meta-Gaussian with Gamma marginals. For this model, both ML estim-
ation and the use of estimation functions are considered. These methods are denoted by
MML and MEF, respectively.

For both models, the marginal distributions (2) are described by parameters v; = (L;, R;).
For the meta-Gaussian model, the dependence is described through the correlation matrices
Y. on the Gaussian scale (one for each class).

The overall portion of correctly classified pixels in the test set for the three methods seen
in Table 6 were 0.387 (IML), 0.400 (MML) and 0.397 (MEF), i.e., the differences are very
small. Tables 7 (IML), 8 (MEF) and 9 (MML) shows the confusion matrices. The results
for MML were similar to those of MEF. We would expect that high correlations within a
class would give less confusion with other classes when taking the covariances into account
(MEF) than when assuming independence (IML). This is mostly the case, but there are
exceptions.

To further investigate the impact of the magnitude of the inter-image correlation, we
performed classification into a reduced number of classes, corresponding to those having
the strongest correlation between components, which were the ones with labels 6, 8, 17,
20, and 24. In this case, the overall portion of correctly classified pixels for the three
classification rules seen in Table 6 were 0.411 (IML), 0.475 (MEF), and 0.458 (MML),
i.e., a significant improvement is obtained by incorporating covariance through meta-
Gaussian distributions. We also investigated the impact of the models on simulated data.
The simulated data where obtained by simulating from a meta-Gaussian distribution
(Gamma marginals) for each class. The class parameters where given from EF estimates
from the real data, where the parameter estimates from the marginal distribution are
kept untouched. Since higher covariance for each class is needed, we did the following.
The cholescky decomposed covariance matrix where multiplied by a factor 5 on the off
diagonal elements. This procedure will give higher correlations in the covariance matrix
and the same relative change for each class. Note that marginal distribution of each class
is Gamma with approximately the same parameter estimates as the real data. The only
change is higher correlation between the channels. Note also that the same number of
data as the real data are produced for each class. The overall portion of correctly classified
pixels for the three classification rules were 0.420 (IML), 0.489 (MEF), and 0.483 (MML),
i.e., a significant improvement is obtained by incorporating covariance through meta-
Gaussian distributions.

To further investigate the impact of the magnitude of the inter-image correlation on the
simulated data, we performed classification into a reduced number of classes, correspond-
ing to those having the strongest correlation between components, which were the ones
with labels 6, 8, 17, 20, and 24. In this case, the overall portion of correctly classified pixels
for the three classification rules were 0.418 (IML), 0.513 (MEF), and 0.499 (MML), i.e., a
significant improvement is obtained by incorporating covariance through meta-Gaussian
distributions.

Note that if we compare the results from MEF and MLE there is very little difference.



Joint distribution of correlated radar images

15

Actually, MEF is doing a bit better in classification. This is probable due to a more
robust procedure for giving estimates.

Table 1: Class labels, class name and number of pixels.

Class label Class name Number of pixels Number of pixels
in training set in test set

1 forest 2559 11985

3 orchard 48 66

4 hard wheat 2985 8195

5 soft wheat 2264 5782

6 maize 2876 10598

7 sunflower 2384 5479

8 barley 141 161

9 oilseed rape 2749 7012

10 peas 623 1573

11 clover 488 793

14 prairie 722 1899

17 bare soil 1162 2993

20 road 404 923

21 water 537 1990

24 urban area 1581 4008

Table 2: L estimates for each class.

Class L1 Lg Lg L4 L5 LG
1 3.72 334 3.07 329 348 3.48
3 4.04 273 256 2.00 4.92 4.42
4 290 282 331 3.09 262 3.14
5 2,60 294 333 255 265 241
6 1.89 147 093 350 341 3.11
7 3.05 1.60 3.01 3.67 3.32 2.66
8 3.31 1.62 3.59 3.88 296 3.21
9 269 279 4.03 3.02 289 247
10 3.27 373 3.59 2.65 2.84 1.76
11 3.10 3.71 322 3.02 3.74 3.73
14 3.27 3.06 3.03 3.05 3.26 3.37
17 2.67 1.69 2.06 287 292 3.22
20 142 124 129 126 145 1.25
21 352 119 1.72 133 2.82 1.99
24 1.09 1.13 119 1.22 119 1.11

In Table 6 the probabilities of correct classification are shown for each of the 15 classes
and for each of the 3 different classification rules.
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Table 3: R estimates (scaled by a factor of 1000071).

Class Rl Rz R3 R4 R5 R6
1 1.32 1.55 153 1.51 138 1.28
3 0.81 092 0.78 1.08 0.79 0.93
4 0.62 0.50 0.42 0.52 0.89 148
) 0.561 0.46 047 053 0.72 1.20
6 1.04 230 290 1.10 1.12 1.20
7 0.67 151 1.77 217 098 1.54
8 0.71 050 1.24 0.79 1.13 1.18
9 0.77 1.03 225 085 0.83 1.36
10 040 1.27 134 143 0.59 2.04
11 065 089 141 1.25 1.14 1.56
14 0.70 0.70 0.70 0.72 0.56 1.07
17 1.03 272 155 127 091 1.42
20 044 0.58 0.61 049 043 0.59
21 0.84 024 073 038 095 0.1
24 3.19 3.06 3.04 3.05 3.04 3.17

Table 4: Displaying probabilities of correct classification for each class and 4 methods.

Table 5: Displaying correlation of class 24.

1
0.245
0.123
0.187
0.392
0.519

Class IML EE MLE
1 0.472 0471 0.482
3 0.394 0.394 0.409
4 0.431 0.453 0.429
bt 0.384 0.366 0.395
6 0.184 0.239 0.223
7 0.334 0.345 0.345
8 0.447 0.435 0.416
9 0.428 0.438 0.45
10 0.528 0.526 0.526
11 0.295 0.31 0.314
14 0.351 0.345 0.341
17 0.241 0.273 0.28
20 0.556 0.531 0.492
21 0.828 0.841 0.841
24 0.415 0.396 0.357
Total 0.387 0.400 0.397

0.245
1
0.085
0.130
0.300
0.546

0.123
0.085

1

0.187
0.130

0.592

0.592

0.549
0.559

1

0.679
0.691

0.392
0.300
0.549
0.679
1
0.896

0.519
0.546
0.559
0.691
0.896

1
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Table 6: Displaying probabilities of correct classification for each class and 3 methods.

Class IML EF ML
6 0.300 0.412 0.405
8 0.839 0.795 0.789
17 0.558 0.545 0.554
20 0.778 0.739 0.72
24 0.493 0.513 0.452
Total 0.411 0.475 0.458

Table 7: Displaying Confusion Matrix for IML Method. C' is correct class while C is
estimated class of the IML method. Overall probability of correct classification is 0.387.
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0.472
0.076
0.006
0.007
0.130
0.080
0.062
0.070
0.010
0.076
0.007
0.158
0.017
0.002
0.278

0.128
0.394
0.050
0.048
0.088
0.069
0.087
0.055
0.051
0.098
0.096
0.098
0.039
0.004
0.059

0.007
0.015
0.431
0.249
0.018
0.011
0.056
0.009
0.009
0.050
0.091
0.014
0.015
0.005
0.008

0.003
0.061
0.265
0.384
0.005
0.005
0.037
0.009
0.010
0.019
0.197
0.007
0.135
0.020
0.008

0.021
0.061
0.002
0.003
0.184
0.028
0.000
0.042
0.006
0.015
0.001
0.058
0.003
0.000
0.015

0.058
0.030
0.001
0.001
0.053
0.334
0.012
0.036
0.116
0.086
0.006
0.065
0.010
0.001
0.044

0.034
0.045
0.048
0.048
0.052
0.043
0.447
0.099
0.025
0.097
0.064
0.038
0.026
0.005
0.024

0.067
0.030
0.002
0.004
0.102
0.057
0.050
0.428
0.074
0.103
0.028
0.079
0.011
0.003
0.023

0.021
0.106
0.017
0.017
0.048
0.120
0.012
0.080
0.528
0.086
0.046
0.069
0.016
0.001
0.012

0.075
0.045
0.019
0.023
0.100
0.158
0.075
0.083
0.076
0.295
0.023
0.073
0.014
0.001
0.039

0.030
0.106
0.109
0.106
0.033
0.019
0.118
0.051
0.053
0.058
0.351
0.054
0.131
0.008
0.030

0.063
0.000
0.002
0.002
0.111
0.048
0.012
0.023
0.022
0.009
0.005
0.241
0.008
0.000
0.034

0.002
0.030
0.042
0.095
0.004
0.002
0.019
0.007
0.013
0.003
0.077
0.007
0.556
0.121
0.005

0.002
0.000
0.005
0.010
0.001
0.001
0.012
0.003
0.000
0.001
0.008
0.002
0.013
0.828
0.004

0.018
0.000
0.002
0.003
0.072
0.023
0.000
0.004
0.005
0.004
0.000
0.038
0.005
0.003
0.415

Table 8: Displaying confusion matrix if the MEF method. C'is correct class while C is
estimated class of MEF method. Overall probability of correct classification is 0.400.

C\ c 1 3 4 5 6 7 8 9 10 11 14 17 20 21 24

1 0.471 0.114 0.007 0.003 0.024 0.059 0.033 0.063 0.021 0.077 0.030 0.069 0.003 0.003 0.023
3 0.076  0.394 0.030 0.030 0.030 0.045 0.045 0.015 0.091 0.061 0.106 0.030 0.030 0.000 0.015
4 0.005 0.059 0.453 0.250 0.006 0.002 0.039 0.002 0.016 0.018 0.107 0.001 0.036 0.007 0.001
5 0.006 0.056 0.281 0.366 0.004 0.003 0.043 0.004 0.018 0.021 0.108 0.002 0.076 0.012 0.001
6 0.126  0.087 0.017 0.009 0.239 0.050 0.045 0.105 0.045 0.104 0.030 0.106 0.004 0.002 0.032
7 0.073 0.066 0.009 0.011 0.035 0.345 0.041 0.060 0.126 0.151 0.020 0.046 0.003 0.001 0.013
8 0.050 0.118 0.037 0.075 0.000 0.012 0.435 0.043 0.012 0.062 0.099 0.012 0.019 0.025 0.000
9 0.066 0.062 0.009 0.009 0.038 0.034 0.085 0.438 0.078 0.093 0.047 0.024 0.009 0.005 0.003
10 0.007 0.055 0.010 0.008 0.009 0.120 0.024 0.076 0.526 0.078 0.051 0.022 0.013 0.001 0.003
11 0.082 0.087 0.043 0.030 0.014 0.076 0.088 0.105 0.091 0.310 0.057 0.008 0.006 0.000 0.004
14 0.008 0.113 0.092 0.162 0.002 0.007 0.060 0.028 0.044 0.025 0.345 0.005 0.099 0.008 0.001
17 0.141 0.100 0.014 0.012 0.061 0.059 0.033 0.083 0.073 0.077 0.049 0.273 0.006 0.002 0.016
20 0.020 0.054 0.016 0.150 0.002 0.010 0.027 0.011 0.023 0.012 0.113 0.009 0.531 0.013 0.011
21 0.003 0.012 0.007 0.022 0.000 0.000 0.003 0.002 0.002 0.001 0.007 0.000 0.096 0.841 0.008
24 0.283 0.052 0.009 0.007 0.015 0.049 0.022 0.022 0.014 0.044 0.032 0.041 0.007 0.005 0.396
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Table 9: Displaying confusion matrix. C'is correct class while C is estimated class of ML

method. Overall probability of correct classification is 0.397.

c\C 1 3 4 5 6 7 8 9 10 11 14 17 20 21 24

1 0.482 0.128 0.007 0.003 0.023 0.055 0.029 0.065 0.023 0.071 0.028 0.068 0.003 0.004 0.012
3 0.076  0.409 0.030 0.030 0.015 0.03 0.045 0.015 0.106 0.061 0.106 0.030 0.030 0.000 0.015
4 0.005 0.065 0.429 0.280 0.006 0.002 0.036 0.001 0.015 0.018 0.106 0.001 0.029 0.007 0.000
5 0.006 0.060 0.267 0.395 0.004 0.004 0.041 0.004 0.018 0.020 0.108 0.002 0.060 0.011 0.001
6 0.132  0.099 0.018 0.009 0.223 0.048 0.041 0.107 0.045 0.098 0.028 0.107 0.004 0.002 0.039
7 0.079 0.069 0.009 0.01 0.033 0.345 0.039 0.063 0.126 0.148 0.020 0.047 0.003 0.001 0.008
8 0.050 0.130 0.043 0.075 0.000 0.012 0.416 0.043 0.019 0.068 0.087 0.012 0.019 0.025 0.000
9 0.067 0.072 0.009 0.010 0.035 0.030 0.079 0.450 0.078 0.086 0.043 0.026 0.008 0.005 0.002
10 0.011 0.056 0.010 0.009 0.008 0.117 0.020 0.077 0.526 0.077 0.050 0.024 0.012 0.001 0.002
11 0.083 0.092 0.042 0.033 0.013 0.069 0.079 0.107 0.096 0.314 0.054 0.010 0.006 0.000 0.001
14 0.007 0.131 0.085 0.181 0.002 0.006 0.058 0.029 0.047 0.021 0.341 0.005 0.078 0.009 0.001
17 0.149 0.115 0.014 0.011 0.057 0.056 0.031 0.083 0.073 0.071 0.044 0.280 0.007 0.002 0.008
20 0.022 0.059 0.016 0.179 0.002 0.009 0.022 0.014 0.023 0.012 0.120 0.009 0.492 0.014 0.009
21 0.003 0.009 0.007 0.024 0.000 0.000 0.003 0.002 0.002 0.001 0.008 0.000 0.092 0.841 0.009
24 0.317 0.059 0.009 0.007 0.016 0.049 0.020 0.025 0.015 0.040 0.030 0.044 0.006 0.005 0.357

Table 10: Displaying confusion matrix. C' is correct class while C is estimated class
ICM method with Gamma. Overall probability of correct classification is 0.589.

of

c\C 1 3 4 5 6 7 8 9 10 11 14 17 20 21 24

1 0.853 0.079 0.001 0.001 0.000 0.008 0.004 0.012 0.003 0.015 0.009 0.012 0.001 0.000 0.003
3 0.030  0.955 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.015 0.000 0.000 0.000 0.000
4 0.001 0.018 0.608 0.286 0.000 0.000 0.010 0.001 0.005 0.002 0.062 0.001 0.005 0.000 0.001
5 0.009 0.019 0.261 0.57 0.001 0.001 0.021 0.003 0.008 0.017 0.045 0.002 0.042 0.000 0.002
6 0.134 0.084 0.006 0.002 0.200 0.022 0.029 0.094 0.019 0.150 0.024 0.180 0.000 0.000 0.057
7 0.057 0.029 0.003 0.002 0.007 0.573 0.008 0.031 0.049 0.188 0.008 0.030 0.000 0.000 0.015
8 0.075 0.019 0.019 0.000 0.000 0.000 0.609 0.000 0.000 0.099 0.180 0.000 0.000 0.000 0.000
9 0.039 0.009 0.002 0.008 0.004 0.013 0.058 0.779 0.036 0.030 0.015 0.007 0.000 0.000 0.000
10 0.003 0.011 0.004 0.005 0.000 0.102 0.003 0.046 0.764 0.045 0.006 0.011 0.000 0.000 0.000
11 0.049 0.034 0.028 0.000 0.003 0.024 0.033 0.062 0.014 0.656 0.095 0.004 0.000 0.000 0.000
14 0.002 0.045 0.038 0.202 0.000 0.006 0.014 0.021 0.019 0.009 0.603 0.000 0.039 0.000 0.000
17 0.191 0.100 0.001 0.001 0.034 0.026 0.025 0.076 0.032 0.075 0.051 0.350 0.002 0.000 0.035
20 0.018 0.013 0.008 0.141 0.000 0.010 0.013 0.011 0.009 0.018 0.174 0.016 0.560 0.004 0.004
21 0.004 0.002 0.004 0.010 0.000 0.000 0.002 0.002 0.000 0.000 0.004 0.000 0.100 0.874 0.000
24 0.392 0.062 0.003 0.004 0.004 0.016 0.005 0.004 0.002 0.013 0.022 0.007 0.002 0.002 0.459
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Table 11: Displaying confusion matrix. C' is correct class while C is estimated class of
ICM method with Metagamma. Overall probability of correct classification is 0.620.

c\C 1 3 4 5 6 7 8 9 10 11 14 17 20 21 24

1 0.871 0.051 0.000 0.001 0.003 0.009 0.003 0.014 0.003 0.017 0.008 0.015 0.001 0.000 0.003
3 0.061 0.742 0.000 0.000 0.000 0.030 0.015 0.000 0.030 0.030 0.091 0.000 0.000 0.000 0.000
4 0.001 0.027 0.636 0.251 0.000 0.001 0.008 0.001 0.006 0.004 0.054 0.000 0.010 0.000 0.001
5 0.008 0.027 0.304 0.503 0.001 0.001 0.015 0.003 0.012 0.014 0.055 0.001 0.054 0.001 0.001
6 0.119 0.090 0.008 0.002 0.277 0.024 0.027 0.096 0.014 0.161 0.015 0.161 0.000 0.000 0.006
7 0.052 0.029 0.002 0.001 0.009 0.606 0.010 0.031 0.064 0.154 0.007 0.024 0.001 0.000 0.009
8 0.075 0.068 0.012 0.000 0.000 0.000 0.578 0.019 0.000 0.093 0.155 0.000 0.000 0.000 0.000
9 0.028 0.019 0.003 0.007 0.003 0.010 0.048 0.794 0.036 0.033 0.010 0.007 0.001 0.000 0.001
10 0.001 0.013 0.004 0.005 0.001 0.087 0.007 0.047 0.772 0.037 0.015 0.011 0.000 0.000 0.000
11 0.025 0.053 0.032 0.003 0.000 0.020 0.039 0.049 0.025 0.68 0.066 0.003 0.000 0.000 0.006
14 0.003 0.051 0.038 0.123 0.000 0.005 0.017 0.019 0.031 0.015 0.622 0.000 0.075 0.000 0.000
17 0.177 0.112 0.003 0.001 0.033 0.021 0.023 0.087 0.035 0.064 0.049 0.388 0.001 0.000 0.007
20 0.015 0.046 0.013 0.072 0.002 0.011 0.024 0.008 0.005 0.014 0.119 0.009 0.648 0.007 0.009
21 0.002 0.002 0.009 0.004 0.000 0.000 0.002 0.001 0.001 0.000 0.001 0.000 0.091 0.888 0.000
24 0.302 0.034 0.004 0.002 0.005 0.010 0.006 0.003 0.002 0.013 0.018 0.007 0.006 0.001 0.587

Table 12: Displaying confusion matrix. C' is correct class while C is estimated class

of
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no contextual method with Metagamma. Overall probability of correct classification

0.404.
c\C 1 3 4 5 6 7 8 9 10 11 14 17 20 21 24
1 0462 0.116 0.007 0.003 0.024 0.059 0.034 0064 0.021 0.077 0.030 0.069 0.003 0.004 0.027
3 0.091 0424 0015 0.045 0.000 0.045 0.045 0015 0.091 0.061 0.106 0.045 0.000 0.000 0.015
4 0.005 0.059 0452 0.236 0.006 0.002 0.045 0.002 0.016 0.018 0.105 0.001 0.045 0.007 0.001
5 0.006 0.056 0.276 0.337 0.005 0.003 0.045 0.004 0.019 0.020 0.107 0.001 0.106 0.012 0.002
6 0.126 0.088 0.017 0.007 0.253 0.051 0.047 0.103 0.046 0.104 0.030 0.111 0.004 0.002 0.013
7 0.073 0.066 0.009 0.008 0.033 0.351 0.044 0060 0.124 0.151 0.023 0.044 0.000 0.001 0.013
8 0.050 0.118 0.043 0.062 0.000 0012 046 0031 0.012 0068 0.099 0012 0012 0.019 0.000
9 0.065 0.061 0.009 0.008 0.037 0.034 0.090 0441 0.078 0.092 0.045 0.027 0.008 0.005 0.003
10 0.008 0.055 0.010 0.007 0.010 0.123 0.024 0.077 053 0078 0.054 0.022 0.004 0.000 0.000
11 0.074 0.091 0.044 0.025 0018 0.073 0.086 0.103 0.093 0.318 0.058 0.006 0.005 0.000 0.005
14 0.008 0.116 0.095 0.147 0.004 0.006 0.063 0.027 0.050 0.023 0.335 0.004 0.113 0.009 0.001
17 0.140 0.098 0.013 0.010 0.058 0.060 0.036 0.081 0.072 0.079 0.050 0.276 0.005 0.002 0.019
20 0.020 0.052 0.013 0.096 0003 0.010 0.028 0.012 0.022 0012 0.098 0.009 0.603 0.014 0.009
21 0.003 0.009 0.008 0.013 0001 0001 0.005 0.003 0.002 0.001 0.009 0.000 0.089 0.854 0.005
24 0.241 0.054 0.009 0.004 0016 0.043 0.023 0.023 0.014 0042 0.029 0.033 0.011 0.005 0.453
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Table 13: Displaying confusion matrix. C' is correct class while C is estimated class of
no contextual IML method with Gamma. Overall probability of correct classification is
0.387.

c\C 1 3 4 5 6 7 8 9 10 11 14 17 20 21 24

1 0.472 0.128 0.007 0.003 0.020 0.058 0.034 0.067 0.021 0.075 0.030 0.064 0.002 0.002 0.018
3 0.076  0.394 0.015 0.061 0.061 0.030 0.045 0.030 0.106 0.045 0.106 0.000 0.030 0.000 0.000
4 0.006 0.050 0.431 0.265 0.002 0.001 0.049 0.002 0.017 0.019 0.109 0.002 0.042 0.005 0.001
5 0.007 0.048 0.249 0.384 0.003 0.001 0.048 0.004 0.017 0.023 0.106 0.002 0.095 0.010 0.003
6 0.130 0.088 0.018 0.005 0.186 0.053 0.052 0.101 0.048 0.100 0.033 0.112 0.003 0.001 0.070
7 0.081 0.069 0.011 0.005 0.028 0.335 0.043 0.057 0.120 0.158 0.019 0.048 0.002 0.001 0.023
8 0.062 0.087 0.056 0.037 0.000 0.012 0.447 0.050 0.012 0.075 0.118 0.012 0.019 0.012 0.000
9 0.070 0.055 0.009 0.009 0.043 0.036 0.099 0.427 0.079 0.084 0.051 0.024 0.007 0.003 0.004
10 0.010 0.051 0.009 0.010 0.005 0.118 0.025 0.075 0.526 0.076 0.053 0.024 0.013 0.000 0.005
11 0.076 0.098 0.050 0.019 0.015 0.088 0.097 0.103 0.086 0.293 0.058 0.009 0.003 0.001 0.004
14 0.007 0.096 0.091 0.196 0.001 0.005 0.064 0.028 0.046 0.023 0.351 0.005 0.077 0.008 0.000
17 0.158 0.099 0.014 0.007 0.058 0.065 0.038 0.079 0.068 0.073 0.054 0.241 0.007 0.002 0.038
20 0.017 0.039 0.016 0.134 0.003 0.010 0.026 0.011 0.016 0.014 0.131 0.008 0.556 0.013 0.005
21 0.002 0.004 0.005 0.020 0.000 0.001 0.005 0.003 0.001 0.001 0.008 0.000 0.121 0.828 0.003

24 0.278 0.059 0.008 0.008 0.015 0.044 0.024 0.023 0.012 0.039 0.030 0.034 0.005 0.004 0.415
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A Derivatives

Both the maximum likelihood and the estimating function estimator can be found by
maximization of a target function. In the maximum likelihood case the target function
is the likelihood or loglikelihood. For the estimating function estimator case, the target
function depends on which estimating function that is decided on. Here also the likelihood
is chosen, but some of the parameters are fixed. Maximization can be performed numer-
ically by only target function evaluations or by also including evaluations of derivative of
the target function. In this section we will find the derivatives of a target function which
is the likelihood both for estimating function and maximum likelihood. We have by (19)

log(/(x;7, U)) = = 5 10g [E(U)| = FtrAU)S(v) + D D loglg(wisivy).  (24)

i=1 j=1
where
S(U) =D((U"U)")"A(UTU) 'D((UTU) )
AU) =D((UTu)"H2uTuDp((UTU) " H2 — 1.
Note that D in D((UTU)™!) means diagonal matrix of (UTU)~!. Furthermore, v =

(Y15 57,) and 7, is a vector of parameters describing the marginal distribution of
component j. The first term in (24) (leaving the constants behind) is
log [S(U)| =log [D((UTU) 1)~ + log |(UTU) | (25)

= —log|D((U"U)™)| — log|U"U|

= —log|D((U"U)™")| - 2log U]

= —log|D((UTU)7)],
where log [U| = 0 because U is a lower triangular matrix and has ones on the diagonal.
Let B=B(U) = UTU. Then

) _OBOB1ODBY) 0

o —1 —_ —1
5 o D) =55 S s - s s DB ) (26)
OB 0B~ o
=90 B D((U"U) ).
The first term in (26) is
0B ouTu
= = J., U+UTy, 2
90, ~ U, ;i U+U Ty, (27)

where J;; denotes a matrix with a 1 in the (4, j)th place and zeros elsewhere. The second

term in (206) is
oB~! —BilJiiBil, 1=
- = -1 1 . . . (28)
OB, -B7'(J;; +J)B7, i #

Taking the derivatives of the second term in (24) (leaving the constants behind) gives

SutrAUSe) =257 O

ou
08 (25(7) - DIS()).

tr(A(U)S(v)) (29)
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The first term in (29) can be calculated in the following way

0A(U) _oD((U'U)")'*U"UD((U"U))"/?

ou ou
oD((UTU))!/2 .
_ (( aU) ) UTUD((UTU) 1)1/2 (3())
1/23UTU

+D((UTU)™) D((UTU) 1H)Y/2
oD((UTU)~1)1/2

ou

ou
+D((UTu)H2uTu

The first and third partial derivatives in (30) is

oD((UTU)~H)1/2 DB 1)'/2
ou - JU
_0BOB ! 9D(B!)!/2
“9U 9B B!
_0BOB7'9D(B)
“9U 9B OB-!

(31)

ID(B)
2
where %B__ll) is the identity matrix. The first two terms in (31) are given in (27) and
(28). The second partial derivatives in (30) is given in (27). This completes the derivatives
of the log likelihood given in (24) wrt to U. Both the maximum likelihood and estimation
function estimator will have the same derivatives in this case. Furthermore, we need the
derivatives of the log likelihood given in (24) wrt to . Taking the derivatives of the
second term in (24) wrt to 7y (leaving the constants behind) gives

0 0

%tr(A(U)S(V)) =o~tr(S(v)A(U)) (32)

Note that the second term in (24) which has the partial derivatives given in (32) is only
needed in the maximum likelihood case. This term is fixed wrt to 7 in the estimating
equation case. The partial derivative left to solve from (32) is

05(y) 1 =0y(xiy) 0 .
. T Y (X, 7))y (X Y 33
oy nz; Oy Oy(xi7) B )y 65 7) (82)
1 oy (xi57) T
where Yr; = (y(xi;7), - .. ,¥(xi;v))" is a px p matrix and Y, ; is lower triangular matrix
of Yr,;. The partial derivative left to solve from (33) is
Ay;(w;7;) 0
I = o NG (s 34
8’YJ 8’7] ( ](x77])) ( )

an(xS'Yj)/a'Yj
P(P~1(Gj(x57;)))
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To be able to find the derivatives in (34), we need to know the specific marginal dens-
ities of the components. Therefore, we will give an example. Let all the marginals be
Gamma distributed (see equation (8)). In the gamma case the derivatives of the marginal
distributions has to be found. The marginal distributions are (v; = (vo;,71;))

Y1j
. 0j Yy15—1
g(IE,’)’) S T eXpy—0 Ty, X > 0.
AT = gyt et
The partial derivatives of the marginal distributions are
9 V1 )
o 95705, 75) = 95(%3 7055 75) ( - (35)
9 F'(%‘))
o 95 (57055 115) 95 (5055 115) (’YOJ g(x) T'(71,)
Using the results in (34) and (35) we get
0 0
— (T v ) = O (G (2 ~Vni s
a%jyj(xv’Voyv’VlJ) 905 (G(5 705, 715)))
_ 2 Gilmig i) — Gl 05,5 + 1)
Yoj (2 HG; (w5705, 715)))

The other partial derivative are not so easy to find and has to be solved numerically.
Taking the derivatives of the third term in (24) wrt to = involves derivatives of the
marginal density functions. This are already found in (35).

B Further results

In this section we will explore radar images from both Feltwell and Bourges. This section
was studied in the beginning of the project, mostly to learn about the subject and to
decide on which path to continue for the rest of the project. Therefore, this section is
put in the appendix so that it can be skipped to get the main message of the report. It
is however kept in the report to show the development of the project.

B.1 Data

There are 3 (bands) radar images of Feltwell. In table 14, 6 classes are displayed with
class name, class labels and number of pixels in each class.
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Table 14: Displaying class label, class name and number of pixels. In parantese is the
probability of class.

Class label

Class name

Number of pixels

in training set
3595 (0.193)
4642 (0.249)
2512 (0.135)
555 (0.030)
5697 (0.306)
1643 (0.088)

Number of pixels

in test set

3716 (0.198)
4517 (0.241)
2568 (0.137)
583 (0.031)
5678 (0.303)
1673 (0.089)

Table 15: Displaying probabilities of correct classification for each class and 5 methods.

Class

2 0.035
4 0.482
6 0.542
8 0.628
10 0.124
12 0.293
Total 0.281

0.192
0.516
0.365
0.528
0.198
0.383
0.323

0.247
0.618
0.318
0.487
0.201
0.319
0.346

0.206
0.543
0.332
0.473
0.243
0.381
0.339

0.223
0.569
0.374
0.509
0.227
0.300
0.344

0.239
0.525
0.387
0.513
0.258
0.323
0.350

0.241
0.710
0.143
0.314
0.319
0.350
0.376

GammaMOM GammaMLE Lognormal0) BoxCox0) Lognormall BoxCoxl MixLognormal2 MixLognormal3

0.246
0.710
0.143
0.317
0.249
0.402
0.361

The results from table (24) shows that there are not much to gain from using dependence
between the different bands. The reason for this is the following. The means of the
different classes are not very different. This means that the classification will have to
use the covariance in order classify to the correct classes. Since the covariance between
different bands are not very different for the different classes, there will not be much
difference between assuming independence and dependence.

Table 16: Displaying estimated Gamma parameters Ly, Ry, Lo, Ry, L3, R4 by the method
of moments for each class.

Class

2
4
6
8
10
12

Ly
0.6818
1.8222
2.1104
0.9001
0.5846
0.8585

Ry
0.0004
0.0006
0.0009
0.0009
0.0004
0.0007

L2 R2

0.0003
0.0004
0.0004
0.0005
0.0004
0.0003

1.1605
2.1614
2.2054
1.1054
0.7210
0.6046

0.8615
1.9362
1.9273
0.7157
0.9680
0.6717

L3 Rg

0.0006
0.0007
0.0010
0.0008
0.0009
0.0007
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Table 17: Displaying estimated Gamma parameters Ly, Ry, Lo, Ro, L3, R4 by the method
of maximum likelihood for each class.

Class L1 Rl LQ R2 L3 R3

2 1.5837 0.0009 1.5052 0.0004 1.9236 0.0014
4 2.1541 0.0007 2.1614 0.0004 2.1874 0.0008
6 2.1831 0.0009 2.0893 0.0004 2.1648 0.0012
8 1.3534 0.0013 1.6003 0.0007 1.3949 0.0016
10 1.3405 0.0010 1.1890 0.0007 1.5025 0.0014
12 1.3145 0.0011 0.9025 0.0005 1.2853 0.0014

We will now explore the Lognormal model further. The previous results are based on
classification of a raw image. The next step is to filter pixel by pixel by taking into account
the neighbors. In table 19, the image is filtered according to a different neighboring
schemes. When no filtering is used, 1 neighbor is used. A filter with 3 neighbors will
replace the target (the pixel in the middle) by a weighted mean of the three neighboring
values.

The next step is to find a appropriate weight for the different neighbors. In the case of
using k neighbor we denote the weight matrix as:

W1
W21
W31
W41

W12
W22
W32
W42

W13
W23
W33
Wy3

W14
W14
W34
W44

W15
W25
W35
Wy5

Ws1 | Ws2 | W53 | Ws4 | Wss

Depending on which neighboring strategy we use, some weights will be zero. In the
case of eg using 3 neighbors there will only be positive weights to the following elements
in the weight matrix given in (36) (wsg,ws3, wss). There are two ways of filtering a
lognormal model. Firstly, it is possible to take a weighted mean on log scale. Secondly,
it is possible to take the log of the weighted mean. The first approach will be denoted
by ML and the next will be denoted by LM. Specifying the weights will be done in the
following way. First number after LM or ML will give the weight to the target pixel
(ws3) and the last (or last two) number will specify the neighbor structure. LMn3 will
give weights (wag, w33, wss) = (1/(2+n),n/(2+n),1/(2 4+ n)). LMnb will give weights
(wa3, Wyz, Wo3, Wz, w34) = (1/(4+n),1/(4+n),1/(4+n),n/(4+n),1/(4+n)). LMn9
will give WelghtS (’UJQQ, W23, Wa4q, W42, W43, W44, W23, W33, w34) = (1/(8 + n), ]./(8 + n), ]./(8 +
n),1/(84+n),1/(8+n),1/(8+n),1/(8+n),n/(8+n),1/(8 +n)).

LMn21 will give weights

0 0.5/(n + 15)

0.5/(n + 15)

0.5/(n + 15) 0

0.5/(n + 15)

1/(n+ 15)

1/(n+ 15)

1/(n+ 15)

0.5/(n + 15)

0.5/(n + 15)

1/(n+ 15)

n/(n+ 15)

1/(n+ 15)

0.5/(n + 15)

0.5/(n + 15)

1/(n+ 15)

1/(n+ 15)

1/(n+ 15)

0.5/(n + 15)

0

0.5/(n + 15)

0.5/(n + 15)

0.5/(n + 15)

0
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Table 18: Displaying correlation matrix between the three bands for each of the 6 classes.

Band 1 | Band 2 | Band 3
Class 2
1.000 0.302 0.519
0.302 1.000 0.128
0.519 0.128 1.000
Class 4
1.000 0.142 0.574
0.142 1.000 0.122
0.574 0.122 1.000
Class 6
1.000 0.186 0.379
0.186 1.000 0.146
0.379 0.146 1.000
Class 8
1.000 0.403 0.601
0.403 1.000 0.432
0.601 0.432 1.000
Class 10
1.000 0.185 0.713
0.185 1.000 0.240
0.713 0.240 1.000
Class 12
1.000 0.478 0.650
0.478 1.000 0.358
0.650 0.358 1.000
LMn25 will give weights
0.5/(n+17) [ 0.5/(n+17) | 0.5/(n+17) | 0.5/(n+ 17) | 0.5/(n + 17)
0.5/(n+17) | 1/(n+17) | 1/(n+17) | 1/(n+17) | 0.5/(n+ 17)
05/(n+17) | 1/(n+17) | n/(n+17) | 1/(n+17) | 0.5/(n+ 17)
0.5/(n+17) | 1/(n+17) | 1/(n+17) | 1/(n+17) [0.5/(n+ 17)
0.5/(n+17) [0.5/(n+17) | 0.5/(n+17) | 0.5/(n+ 17) | 0.5/(n + 17)

In table (20) the results of the different methods are shown. The typical effect of replacing
a mean of pixel values by the target of a pixel value is better classification when a wider
range of neighbors are used. The difference between LM and ML is small.
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Table 19: The pixel in the middle is filtered by a weighted mean of black neighbors.

1 neighbors 3 neighbors
OO0 oo
OO odon
oMo [HENE[]
o oo
I oon
5 neighbors 9 neighbors
OO0 oo
Ol [HENE[]
(N[ [EENEC]
oMo [IHENE[]
I oon
21 neighbors 25 neighbors
(NN EEEEN
EEEEN EEEEN
EEEEN EEEEN
EEEEN EEEEN
(HENE[] EEEEN

Using the neighbor in filtering has a positive effect on better performances in classific-
ation. The total probability of correct classification is 0.34 for Lognormal model (with
dependence) with one neighbor (no filtering). The probability goes up to 0.51 with filter-
ing (25 neighbors). We will use the neighbors also in a slightly different setting. When
classifying a pixel we have only used information about the pixel value for three bands.
However, it is also possible to use the neighbor as part of the feature vector. Using 5
neighbor will give us a feature vector of length 3 x 5 = 15. From table (22) the best result
is a probability of correct classification of 0.59.
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Table 20: Displaying classification (with covariance) of the three bands for each of the 6

classes and for different neighboring methods.

Method Class2 Class4 Class 6 Class 8 Class 10 Class 12

LM13
ML13
LM23
ML23
LM15
ML15
LM25
ML25
LM35
ML35
LM19
ML19
LM39
ML39
LM59
ML59
LM121
ML121
LM221
ML221
LM321
ML321
LM125
ML125
LM225
ML225
LM325
ML325

0.361
0.368
0.354
0.356
0.414
0.411
0.409
0.399
0.390
0.387
0.449
0.440
0.423
0.419
0.413
0.398
0.486
0.475
0.473
0.473
0.464
0.461
0.481
0.476
0.477
0.469
0.467
0.461

0.644
0.626
0.644
0.625
0.680
0.652
0.675
0.656
0.668
0.654
0.721
0.701
0.708
0.685
0.688
0.667
0.758
0.742
0.756
0.738
0.745
0.724
0.763
0.746
0.759
0.742
0.749
0.730

0.461
0.453
0.452
0.447
0.505
0.483
0.502
0.480
0.489
0.469
0.566
0.542
0.546
0.522
0.524
0.484
0.639
0.589
0.622
0.587
0.605
0.578
0.651
0.601
0.646
0.598
0.628
0.593

0.626
0.633
0.636
0.617
0.657
0.654
0.664
0.668
0.655
0.666
0.686
0.717
0.693
0.712
0.677
0.698
0.709
0.774
0.717
0.762
0.724
0.755
0.726
0.765
0.731
0.771
0.720
0.755

0.310
0.291
0.310
0.282
0.314
0.300
0.315
0.291
0.305
0.286
0.294
0.294
0.284
0.281
0.278
0.282
0.260
0.295
0.256
0.286
0.252
0.277
0.249
0.293
0.251
0.290
0.249
0.283

0.293
0.342
0.298
0.337
0.321
0.366
0.328
0.369
0.327
0.359
0.378
0.433
0.377
0.415
0.368
0.389
0.469
0.507
0.470
0.500
0.458
0.493
0.470
0.524
0.474
0.518
0.469
0.502

Total
0.430
0.424
0.428
0.418
0.459
0.448
0.457
0.445
0.447
0.437
0.484
0.480
0.470
0.464
0.457
0.447
0.507
0.511
0.502
0.506
0.493
0.495
0.507
0.514
0.505
0.510
0.497
0.501
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Table 21: Displaying classification (assuming independence) of the three bands for each

of the 6 classes.

Method Class2 Class4 Class 6 Class 8 Class 10 Class 12

LM13
ML13
LM23
ML23
LM15
ML15
LM25
ML25
LM35
ML35
LM19
ML19
LM39
ML39
LM59
ML59
LMI121
ML121
LM221
ML221
LM321
ML321
LM125
ML125
LM225
ML225
LM325
ML325

0.373
0.390
0.376
0.383
0.425
0.436
0.417
0.432
0.407
0.416
0.447
0.473
0.442
0.465
0.422
0.436
0.476
0.505
0.477
0.500
0.478
0.492
0.478
0.502
0.478
0.503
0.475
0.496

0.707
0.689
0.702
0.690
0.743
0.727
0.739
0.729
0.733
0.719
0.770
0.752
0.763
0.749
0.750
0.734
0.783
0.754
0.781
0.756
0.780
0.758
0.778
0.750
0.781
0.753
0.780
0.754

0.392
0.369
0.386
0.364
0.396
0.366
0.390
0.373
0.392
0.37

0.425
0.373
0.418
0.376
0.413
0.374
0.462
0.378
0.455
0.375
0.451
0.387
0.467
0.390
0.466
0.392
0.465
0.392

0.580
0.573
0.575
0.563
0.580
0.562
0.581
0.595
0.581
0.578
0.606
0.588
0.588
0.592
0.581
0.588
0.605
0.597
0.603
0.603
0.612
0.621
0.621
0.587
0.626
0.594
0.621
0.610

0.295
0.289
0.300
0.281
0.308
0.310
0.310
0.307
0.304
0.304
0.325
0.339
0.320
0.330
0.313
0.317
0.280
0.340
0.279
0.339
0.281
0.334
0.249
0.331
0.251
0.333
0.254
0.330

0.311
0.330
0.313
0.332
0.301
0.333
0.301
0.326
0.304
0.325
0.296
0.338
0.299
0.337
0.306
0.342
0.321
0.364
0.326
0.360
0.328
0.356
0.349
0.372
0.352
0.365
0.345
0.365

Total
0.434
0.429
0.433
0.425
0.455
0.452
0.452
0.452
0.448
0.445
0.475
0.477
0.470
0.472
0.461
0.459
0.477
0.486
0.476
0.485
0.476
0.484
0.471
0.484
0.472
0.486
0.471
0.484

Table 22: Displaying classification (assuming dependence) of the three bands times 5
neighbor for each of the 6 classes.

Method Class2 Class4 Class 6 Class 8 Class 10 Class 12

LM121
ML121
LM125
ML125
LM225
ML225

0.528
0.531
0.536
0.530
0.535
0.534

0.753
0.733
0.761
0.744
0.754
0.738

0.635
0.597
0.636
0.598
0.634
0.586

0.738
0.768
0.755
0.800
0.757
0.787

0.508
0.461
0.505
0.463
0.492
0.448

0.401
0.509
0.419
0.506
0.425
0.508

Total
0.586
0.572
0.590
0.575
0.585
0.568
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B.2 Bourges data set

The data set consists of a multitemporal series of 6 radar images of Bourges, France. The
images are acquired in the summer season 1993. In table 1, 15 classes are displayed with
class name, class labels and number of pixels in each class. In Table 16, the estimated
values of the parameter L in the Gamma distribution for each class and each band are
displayed.

Table 23: Displaying L, Lo, . .. , Lg for each class.

Class L1 L2 L3 L4 L5 Lﬁ

371 333 3.04 328 347 347
3.94 264 292 236 516 4.63
286 280 3.28 266 220 285
2.60 252 3.06 223 246 1.79
0.82 090 035 3.22 346 2.62
256 1.34 279 3.65 3.22 242
3.29 1.24 351 394 274 3.17
9 266 2.77 4.04 298 285 243
10 3.24 373 3.57 261 281 1.36
11 254 364 3.02 264 3.78 3.52
14 3.28 3.04 3.00 268 3.11 3.17
17 210 1.21 1.53 255 2.75 3.03
20 1.06 1.04 1.22 094 1.33 0.98
21 3.49 0.66 192 1.26 2.59 0.90
24 024 026 035 042 036 0.24

00 ~1 O T W

In Table 18 the probabilities of correct classification are shown for each of the 15 classes
and for each of the 5 different classification rules.
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Table 24: Displaying probabilities of correct classification for each class and 4 methods.

Class Gamma0 Gamma0 Lognormal) Gammal Lognormall MixLognormal2 MixLognormal3

MOM MLE MLE
1 0.507 0.473 0.511 0.468 0.491 0.568 0.569
3 0.379 0.379 0.348 0.424 0.409 0.485 0.485
4 0.451 0.430 0.439 0.454 0.479 0.264 0.258
5 0.364 0.384 0.306 0.329 0.287 0.310 0.307
6 0.188 0.186 0.178 0.255 0.264 0.225 0.228
7 0.347 0.335 0.348 0.359 0.378 0.197 0.196
8 0.447 0.447 0.447 0.466 0.491 0.416 0.422
9 0.464 0.432 0.414 0.446 0.434 0.295 0.299
10 0.520 0.528 0.519 0.530 0.526 0.267 0.273
11 0.298 0.288 0.306 0.309 0.310 0.362 0.369
14 0.380 0.352 0.314 0.330 0.323 0.364 0.335
17 0.222 0.239 0.226 0.278 0.268 0.259 0.255
20 0.505 0.556 0.544 0.605 0.562 0.602 0.615
21 0.802 0.827 0.821 0.854 0.867 0.849 0.850
24 0.293 0.415 0.470 0.415 0.483 0.501 0.499
Total ~ 0.391 0.388 0.388 0.403 0.412 0.360 0.359

In Table 25, the classification of probabilities for each class is displayed.

Table 25: Displaying classification within each class. Classification rule is Gamma0

Class 1 3 4 5 6 7 8 9 10 11 14 17 20 21 24
1 0507 0.149 0.007 0.003 0.012 0.055 0.029 0.072 0.023 0.066 0.026 0.048 0.001 0.002 0.001
30076 0379 0.03 0.061 0.045 0.045 0.03 0.03 0106 0.045 0121 0  0.03 0 0
4 0.006 0.057 0451 0.242 0.005 0.001 0.044 0.001 0.014 0.022 0.124 0.002 0.024 0.005 0
5 0.007 0.055 0.283 0.364 0.005 0.001 0.045 0.006 0.016 0.022 0.126 0.002 0.057 0.009 0.001
6 0156 0.103 0.019 0.005 0.188 0.058 0.045 0.12 0.049 0.095 0.03 0.11 0.002 0.001 0.019
7 0097 0.074 0.01 0.007 0.011 0.347 0.039 0.067 0.117 0.157 0.019 0.049 0.002 0.001 0.004
8 0.062 0.106 0.062 0.043 0.006 0.012 0.447 0.043 0.025 0.075 0.099 0.006 0.006 0.006 0
9 0.082 0.067 0.01 0.008 0.017 0.035 0.087 0.464 0.079 0.079 0.048 0.019 0.004 0.002 0
10 0.012 0.057 0.008 0.013 0.005 0.118 0.022 0.079 0.52 0.084 0.055 0.018 0.008 0  0.001
11 0.087 0.101 0.054 0.01 0.008 0.081 0.091 0.119 0.076 0.298 0.059 0.015 0.001 0.001 0
14 0007 0117 0.117 0.162 0.001 0.006 0.061 0.033 0.044 0.02 0.38 0.001 0.043 0.007 0
17 0197 0.115 0.014 0.007 0.035 0.079 0.032 0.1 0.071 0.07 0.051 0.222 0.004 0.001 0.002
200 0.018 0.049 0.024 0.16 0.004 0.009 0.022 0.015 0.022 0.012 0.142 0.004 0.505 0.01 0.004
21 0.002 0.005 0.005 0.031 0  0.002 0.005 0.002 0.002 0.001 0009 0 0133 0.802 0.004
240374 0.069 0.009 0.009 0.022 0.058 0.02 0.027 0.012 0.033 0.029 0.039 0.003 0.003 0.293
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Table 26: Displaying classification within each class. Classification rule is Lognormal0

Class 1 3 4 5 6 7 8 9 10 11 14 17 20 21 24
10511 0.091 0.006 0.002 0.026 0.059 0.026 0.062 0.019 0.066 0.022 0.07 0.002 0.003 0.037
0.136 0.348 0.045 0.045 0015 0 0045 0.03 0121 0.076 0.091 0.03 0015 0 0
0.008 0.07 0439 0205 0001 0 0.066 0.003 0.014 0.032 0.106 0.003 0.048 0.005 0
0.008 0.063 0.272 0.306 0.001 0.002 0.068 0.006 0.016 0.035 0.108 0.003 0.099 0.01 0.003
0.163 0.065 0.016 0.004 0.178 0.061 0.038 0.1 0.049 0.104 0.02 0.099 0.005 0.002 0.096
0.106 0.053 0.01 0.009 0.028 0.348 0.041 0.05 0.108 0.15 0.013 0.047 0.005 0.001 0.031
0.068 0.099 0.075 0031 0 0012 0447 0.043 0.019 0.093 0.068 0.012 0.025 0.006 0
0.103 0.043 0.007 0.007 0.041 0.045 0.085 0.414 0.082 0.088 0.033 0.029 0.012 0.005 0.007
10 0.016 0.044 0.01 0.007 0.005 0.146 0.021 0.07 0.519 0.074 0.04 0.024 0.02 0.001 0.004
11 0116 0.073 0.038 0.01 0.014 0.111 0.081 0.095 0.088 0.306 0.044 0.014 0.005 0  0.005
14 0013 0115 0.106 0.14 0.002 0.005 0.077 0.041 0.062 0.046 0.314 0.008 0.064 0.008 0
17 0185 0.08 0.01 0.006 0.06 0.077 0.031 0.083 0.068 0.074 0.041 0.226 0.007 0.002 0.051
20 0.02 0.049 0.014 0127 0.004 0.01 0.03 0.015 0.028 0.02 0.117 0.008 0.544 0.009 0.007
21 0.002 0.005 0.003 0.023 0.001 0  0.005 0.002 0.001 0.001 0.009 0 013 0821 0
24 0268 0.047 0.008 0.005 0.011 0.04 0.021 0.022 0.01 0.037 0.025 0.025 0.006 0.004 047

O =1 D U= W

N}

Table 27: Displaying classification within each class. Classification rule is Lognormall

Class 1 3 4 5 6 7 8 9 10 11 14 17 20 21 24

10491 0.079 0.008 0.001 0.038 0.059 0.028 0.062 0.02 0.068 0.024 0.074 0.001 0.005 0.044
3 0106 0409 0.045 0.03 0 003 0.061 0.03 0121 0.045 0.076 0.045 0 0 0
4 0.005 0.078 0479 0.178 0.004 0.002 0.06 0.003 0.017 0.031 0.109 0.002 0.024 0.008 0
5 0.007 0.07 0306 0.287 0.004 0.005 0.066 0.006 0.019 0.032 0.113 0.002 0.07 0.013 0
6 0151 0.065 0.017 0.003 0.264 0.065 0.036 0.108 0.049 0.106 0.02 0.099 0.001 0.003 0.013
70095 0.057 0.011 0.005 0.034 0.378 0.041 0.054 0.107 0.144 0.016 0.04 0  0.002 0.018
§ 0075 0.075 0.081 0.012 0.012 0.019 0491 0.037 0.012 0.075 0.075 0.012 0.006 0.019 0
9 0.087 0.045 0.009 0.007 0.041 0.042 0.081 0.434 0.082 0.099 0.033 0.028 0.003 0.009 0.002
10 0.013 0.045 0.012 0.004 0.009 0.154 0.017 0.067 0.526 0.076 0.043 0.031 0.002 0.002 0
11 0.107 0.066 0.043 0.009 0.018 0.092 0.081 0.107 0.093 0.31 0.047 0.016 0.003 0  0.009
14 0014 013 0111 0111 0.003 0.006 0.071 0.04 0.068 0.045 0.323 0.009 0.058 0.011 0.001
170159 0.079 0.013 0.006 0.069 0.069 0.03 0.088 0.073 0.076 0.039 0.268 0.002 0.004 0.024
20 0.018 0.057 0.016 0.101 0.007 0.009 0.03 0.017 0.029 0.017 0.108 0.008 0.562 0.011 0.009
21 0.002 0.01 0.004 0.017 0.002 0  0.003 0.003 0.001 0.002 0.009 0 0.083 0867 0

24 023 0045 0.011 0.003 0.017 0.044 0.024 0.026 0.011 0.039 0.024 0.031 0.006 0.006 0.483

Table 28: Displaying classification within each class. Classification rule is Lognormal2

Class 1 3 4 5 6 7 8 9 10 11 14 17 20 21 24
10568 0.1 0006 0.003 0.031 0.018 0.019 0.032 0.01 0.07 0.031 0.047 0.003 0.001 0.065
3 0121 0485 0.03 0 0015 0.03 0.045 0.045 0.03 0.03 0121 0.045 0 0 0
4 0009 0128 0.264 0276 0.007 0.001 0.04 0.002 0.003 0.031 0.19 0.001 0.041 0.007 0.001
5 0.012 0122 0163 0.31 0.006 0.002 0.05 0.002 0.006 0.034 0.186 0.002 0.091 0.014 0.001
6 0245 0.095 0.01 0.008 0225 0.041 0.028 0.071 0.015 0.109 0.031 0.099 0.007 0.001 0.017
70176 0.124 0.009 0.008 0.037 0.197 0.04 0.037 0.037 0.224 0.025 0.059 0.002 0.001 0.026
§ 0106 0.106 0.043 0.05 0.006 0 0416 0.031 0012 0.106 0.112 0 0012 0 0
9 0182 0.094 0.009 0.007 0.034 0.02 0.065 0295 0.03 0.136 0.056 0.046 0.018 0.002 0.004
10 0.05 0.084 0.016 0.008 0.018 0.146 0.008 0.047 0.267 0.186 0.082 0.065 0.019 0.004 0.001
110193 0126 0.023 0.019 0.011 0.029 0.043 0.055 0.028 0.362 0.084 0.009 0.008 0 0.01
14 0.023 0191 0.056 0.09 0.006 0.005 0.046 0.015 0.015 0.046 0.364 0.011 0.119 0.012 0.001
170257 011 0.009 0.004 0.049 0.027 0.024 0.049 0.023 0.085 0.055 0.259 0.008 0.002 0.041
20 0.03 0.078 0.023 0.075 0.003 0.004 0.015 0.01 0.004 0.017 0.099 0.01 0.602 0.022 0.008
21 0.003 0.013 0.015 0.029 0 0 0.008 0.001 0.007 0.001 0.007 0 007 0849 0
240255 0.061 0.006 0.003 0.014 0.024 0.015 0.01 0.006 0.034 0.031 0.024 0.012 0.003 0.501
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Table 29: Displaying classification within each class. Classification rule is Lognormal3

Class

O =1 O U= W

N}

11
14
17
20
21

1
0.569
0.136
0.008
0.012
0.242
0.179
0.099
0.174
0.056
0.187
0.022
0.257
0.029
0.003
0.256

3
0.099
0.485
0.122
0.119
0.093
0.121
0.106
0.097

0.08
0.125
0.19
0.111
0.078
0.013
0.061

4
0.006
0.03
0.258
0.157
0.01
0.009
0.043
0.008
0.015
0.021
0.053
0.009
0.022
0.017
0.007

5
0.003
0.015
0.282
0.307
0.008
0.007

0.05
0.007
0.008
0.015
0.084
0.003
0.068
0.031
0.004

6
0.033
0.03
0.007
0.006
0.228
0.037
0.006
0.035
0.017
0.011
0.006
0.051
0.003
0
0.014

7
0.017
0.03
0.001
0.001
0.04
0.196

0.021
0.14
0.026
0.006
0.025
0.003

0.022

8
0.017
0.015
0.039
0.049
0.026

0.04
0.422
0.063
0.009

0.04
0.044
0.023
0.014
0.007
0.014

9
0.032
0.03
0.001
0.002
0.072
0.038
0.012
0.299
0.05
0.062
0.018
0.049
0.009
0.001
0.009

10
0.01
0.03

0.003
0.005
0.016
0.038
0.012
0.03
0.273
0.03
0.015
0.025
0.002
0.005
0.005

11
0.074
0.03
0.033
0.034
0.112
0.224
0.106
0.139
0.175
0.369
0.044
0.087
0.017
0.001
0.038

14
0.031
0.121
0.182
0.172
0.032
0.023
0.124
0.054
0.082
0.081
0.335
0.052

0.09
0.005
0.031

17
0.046
0.045
0.001
0.002
0.097
0.058

0
0.044
0.069

0.01
0.011
0.255

0.01

0
0.024

20
0.003
0
0.056
0.118
0.008
0.003
0.019
0.023
0.022
0.011
0.159
0.01
0.615
0.067
0.012

21
0.001
0
0.006
0.015
0.001
0.001
0
0.001
0.004
0
0.011
0.002
0.029
0.85
0.003

24
0.059
0
0.001
0.001
0.015
0.026
0
0.003
0.001
0.01
0.001
0.04
0.01
0
0.499
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