ON THE STABILITY OF PRESSURE AND VELOCITY COMPUTATIONS FOR
HETEROGENEOUS RESERVOIRS

ARE MAGNUS BRUASET* AND BJ®RN FREDRIK NIELSEN**

Abstract. This paper is concerned with the stability of self-adjoint second order elliptic problems with respect
to perturbations of the involved coefficient functions. In particular, we study such behaviour for the pressure equation
related to incompressible or steady state flow in a heterogeneous reservoir. We establish analytical estimates on the
changes in the pressure and velocity caused by mobility perturbations measured by the L° norm. This stability analysis

is complemented by numerical experiments.
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1. Introduction. In reservoir simulation, collected data on geology is the backbone of massive
computations that are used for prediction and optimization of hydrocarbon production. As for most
types of simulation, there are many possibilities for introducing nonphysical effects or even errors that
can turn any computation into nonsense. Typically, such divergence from the underlying process could
be caused by the use of incompetent physical or mathematical models, unsuitable numerical meth-
ods or erroneous computer codes. Even when accepting the chosen model and its implementation,
the simulation may be badly influenced by noisy input data or inaccuracies in the interpretation of
physical measurements. For this reason, it is important to know how the solution of established math-
ematical models are affected by variations in the input data, e.g. in material coefficients and boundary
conditions. The traditional stability analysis of elliptic problems seems to pay less attention to per-
turbations of the coefficient functions than to perturbations of the boundary conditions and source
terms. As far as material coefficients are concerned, most results deal with regularity assumptions,
see Dautray and Lions [4, Ch. VII] and Hackbusch [12, Ch. 9]. However, this paper will investigate
the property of stability with respect to perturbations of the involved coefficients. In particular, we
study the pressure and velocity in a heterogeneous reservoir subject to variations in certain geological
parameters.

It is generally accepted that mathematical models of fluid flow in porous media may be stated in
terms of coupled partial differential equations, see for instance Ewing [7] or Peaceman [15]. In this
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paper we will concentrate on the elliptic equation
(1.1) V-[A(Vp—pgVD)+ 2L =0 inQcCIRZ
p

where the unknown fluid pressure p is related to incompressible or steady-state flow. Moreover, the
function D denotes the depth of the reservoir measured in the direction of gravity, while g is the
gravitational constant and p is the fluid density. Throughout this paper we will assume that p, g and
VD are constant over 2. The second order mobility tensor A incorporates physical parameters such
as the permeability of the medium and the viscosity of the fluid. Depending on the exact definition of
A, (1.1) may be taken as a prototype of the pressure equations for single-phase as well as multi-phase
flows. For heterogeneous reservoirs, the mobility may have large variations and even discontinuities.
Typically, A can be piecewise constant, thus representing the effect of different reservoir layers. The
function ¢ in (1.1) represents internal sources. Typically, ¢ will be a combination of Dirac delta
functions that implement injection and production wells located inside €.

The boundary 9€2, which is assumed to be sufficiently smooth, can be divided into three disjoint

segments iy, Tout and Tepge. The pressure equation (1.1) is then subject to the boundary conditions

v'en = g on iy,
(12) P = Pout on I‘outa
v.n = 0 on Lejge.

Here n denotes the outwards directed normal vector of unit length, while the Darcy velocity v is

defined as
(1.3) v=—-A(Vp—pgVD).

In a reservoir setting, the boundary segments [, and [,y refer to inwards and outwards fluxes,
respectively. The remaining part of the boundary, [¢se, is subject to no-flux conditions.

The remainder of this paper is organized as follows: In the next section we study perturbations
of the coefficient functions for an operator equation having the form of the pressure equation. This
leads to an abstract error estimate which we apply to our model problem in §3. The main result of
this paper shows that the pressure and the velocity field of the pressure equation depends Lipschitz
continuously on perturbations in the mobility tensor measured in the L® norm. In §4 we complement
the stability analysis through a series of numerical experiments based on conforming as well as mixed

finite element procedures. Finally, we summarize the results in §5.

2. Stability analysis in an abstract Hilbert space setting. Instead of studying perturba-
tions in the mobility tensor A for the pressure equation (1.1) directly, we will first consider this type
of problem for more general operator equations. Then, in the next section, the theory is applied to

our model problem (1.1)-(1.2). Tt should be noted that a perturbation in the mobility tensor A causes
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changes in the bilinear form and the functionals associated with the weak formulation of the problem
(1.1)-(1.2). With this in mind, we proceed as follows:
Let #H be a real Hilbert space with inner-product (+,-) and norm ||-||. Consider the following two

linear variational problems: Find u; € H such that
(2.1) a;(u;, ) + b;(v) = f(y) forall € H, and for i = 1,2.

Assume that f(-) and b;(-) for i = 1, 2 are bounded linear functionals on #, and that a;(-, ) fori = 1,2

are bilinear, continuous and H-elliptic forms on H x H. That is, there exists constants L, N, k and K

such that
lF) < L]l forall y € H
) biw) < N 9] for all 4 € M
' ai(, %) > k ||| for all 1 € H

la;(u, ¥)| < K

ul||¥]] for all u,vy € H

Notice that we assume the existence of a common bound N for b;(-) and common bounds k£ and K
for a;(+,-), i =1,2.

It follows from the Lax-Milgram theorem (see for instance Dautray and Lions [4] or Gilbarg and
Trudinger [11]) that the problem (2.1) has a unique solution u; € K for i = 1,2. Moreover, by choosing
¥ = u; in (2.1) and applying (2.2) we get the following a priori bound

N
(2.3) [|u; ]| < , fori=1,2.

Next, assume that the bilinear forms and the linear functionals are close in the sense that there

exist positive numbers A and B such that

(2.4) |az(u, ) —ar(w, )| < Alul[ ||| and  [by(4) = bi(4)| < B |4 ]l;

for all u, ¢ € H. Now, the question is: how close are the two solutions of the problems in (2.1)?

THEOREM 2.1. Let uy and uz be the respective solutions of (2.1). If the assumptions (2.2) and
(2.4) hold, then

L+ N B

(2.5) lus—wlls (S5 ) 4+ 4
Proof. Subtracting (2.1) with ¢ = 1 from (2.1) with i = 2 we get

az(uz, ¥) — ai(u, ¥) + ba(¥) — ba(¢) = 0.

Which is equivalent to

az(ug, ) — ag(ur, ) + ag(uy, ¥) — ay(ur, ¥) + ba(v) — bi(¥p) = 0.
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Since uy, uz € H we may choose ¥ = uy — uy to obtain
az(ug — ug, ug — uy) = —ag(uy, ug — u1) + ar(uy, uz — ug) — ba(ug — uy) + by(uz — uy),

where we have used the fact that as(-,-) is a bilinear form. Applying (2.2) and the triangle inequality
we get

(26) /{7 ||U2 — U7 ||2§ |a2(u1, Ug — Ul) — al(ul, Uy — Ul)l + |b2(U2 — Ul) — bl(U2 — Ul)l

By (2.4) and (2.3) it is easy to see that

L+ N
st g = 1) = s e = )] < A f s = w1 (22 ) A fua =

Finally, combining this inequality with (2.6) and (2.4) gives

L+ N
llu =P (S5 ) Al = w5 e = .

which finishes the proof. O

3. Stability analysis of the pressure equation. In this section we will study perturbations
of the mobility tensor A, measured by the L®° norm. In particular, we will show that the pressure p
and the velocity v for the problem (1.1)-(1.2) depend continuously on A. Before presenting the main
result in this paper, we introduce some notation and an appropriate weak formulation of our model
problem.

In this paper we use LP(Y), for Y = Q,Tin, to denote the classical LP spaces of real valued
functions defined on Y. On L?(Q) x L*(Q) we introduce the norm ||- ll(z2(2))> given by

W [EL2(ayy== w1220y + w2720

for w = (w1, wy)” € L?(Q) x L*(Q). For z € IR?, |z| denotes the Euclidean norm of z. The Sobolev
space HY(Q) is as usual defined by

m@ - {se @ 3. e o),

where 9¢/0z and 9v¢/dy are the distributional partial derivatives of 1. The appropriate subspace for

our model problem, due to the boundary conditions (1.2), is
V = {1/; c Hl(Q); ¥ =0 on Fout}.

Now, the weak formulation of (1.1)-(1.2) can be defined as follows: Find p € H(Q) such that

P = Pout o0 ['gy¢ and

Y B VR . - .
(3.1) /QV1/; (AVp) dxf/ﬂpi/; dl+/ﬂVi/J (pgAV D) dx /Fin Y gin ds
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for all 4 € V. To get a well-posed variational problem (3.1), we will assume that
(32) qc LQ(Q)v De Hl(Q)a gin € LZ(Fin)a Pout € H1/2(Fout)-

Moreover, recall that p, ¢ and VD are constant over €.
In the weak formulation (3.1) the unknown function p is not in the same space as the variational
function . Therefore, in order to apply Theorem 2.1, it is convenient to introduce the following

alternative formulation of this problem: Find u € V such that

= r— . Y | _ .
(3.3)/QV1/; (AVu) d.z‘Jr/QV'Lb (AVDyy) d /ﬂVi/) (pgAV D) dx /9101/; dx /Fin Ygin ds

for all ¢» € V. Here, P,,, € H'(2) denotes an extension of poyt to Q. The existence of this extension
follows from assumption (3.2) and the trace theorem. Moreover, it satisfies T(Pyyt)|Tone = Pout, Where
T : HY(Q) — HY%(0Q) denotes the trace operator. It is clear that if u is a solution of (3.3) then
P = U+ Doyt 18 & solution of (3.1) and vice versa.

The main objective of this paper is to study perturbations of the mobility tensor, i.e., to find out
whether the pressure p and the velocity v are stable with respect to perturbations of A. In order to

define an appropriate set of mobility tensors, we consider the family of mappings

A
S=<SA: Q- R A= 7 where A,y,n € L™ (Q)
TN

We will consider uniformly positive definite matrices. More precisely, for given real numbers M >

m > 0, a collection A,, 3y of mobility tensors is defined by

TA
Am7M{A€S; m§w§Mf0rallz€IR2\{0}andx€Q}.

|z|?
Notice that if A € A, r then A(x) is positive definite throughout €, and the variational problem

(3.1) is strictly elliptic, see for instance Dautray and Lions [5, Ch. IL.8]. For A € A,, » and x € Q the

operator norm |A(x)| is, as usual, defined by

A(x)z
|[A(x)| = sup Ax) |
zeRm?\{0} 2]

From the definition of A,, ar it is easy to see that every mobility tensor A € A,, ps satisfies the

inequality
(3.4) m<|A(x)| <M forallxeQ.

It follows from the Lax-Milgram theorem that if ¢, D, gin and pout satisfy (3.2) then the problem
(3.1) has a unique solution p € H'(Q2) for every A € A, pr. Thus, we can study perturbations of the

mobility tensor A such that the perturbated mobility tensor also belongs to A,, as. Now, introduce



the notation
a(su$) = [ VoAV da
Q
HA) — [ V- (AVFa) dz = [ V6 (p0AVD) do

C[ay, |
1)~ [ Lo /F g da

For every pair A(D A ¢ A m of mobility tensors we get two problems of the form (3.3): Find
u; € V such that

(3.5) a(AD;ui, ) + B(AD, ) = f(4)

for all ¥ € V, and for ¢« = 1,2. As a consequence of Theorem 2.1, we obtain the following bound in

terms of the L°° norm

A — A®) || Loy = ess sup [AD(z) — AP ().
€N

COROLLARY 3.1. Let uy and uz denote the respective solutions of (3.5) associated with A AG)
Am . Then p1 = u1 + Poyy and py = g + Doy are the solutions of (3.1) corresponding to A = A

and A = A®), respectively. Moreover, there exist constants ¢1,cy € Ry such that
lp1— p2llmiga) < e []AY = AP || po(qy
and
|vi — v lz2eay: < e2|[AY — AP || pe(qy,
where v; = —A)(Vp; — pgV D) fori—1,2.

Proof. Referring to the symbols used in §2 we put # =V, (-,-) = (-, ) mrq) |- 1= || [z
ai(-,+) = a(A®D; -, ) and b;(-) = b(A);.), while f(-) is as defined above. Then it is easy to verify that
(2.2) is satisfied with N' = M{|Pouc || () + M| pgV D l(L2(a))2, L = [la/pllez @)+ 1T 1 ginllL2(050)s
k= m/(1+ P?) and K = M. Here, ||T|| denotes the operator norm of the trace operator, and P is

the constant in Poincaré’s inequality;

1/2
¥ lL2@) < P </ |w|2) for all ¢ € V,
Q

see for instance Dautray and Lions [4, Ch. IV.7]. Moreover, (2.4) holds with A = ||A(Y) — A(®) ||, and
B = (N/M)|| A" — A®)||,. Hence, from Theorem 2.1 we get

_ _ L+ N N
P2 — p1llar () = | u2 + Pout — (U1 + Pout) |lH1(02) < 2 A — A || + WHA(U — A |
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Combining this inequality with the triangle inequality, the Holder inequality and inequalities (3.4)

and (2.3) it follows that
Vi = va 2y = =AY (V1 — pgV D) + A (Vps — pgV D) |12y
= || =AW (Vp, — pgV D) + AP (Vpy — pgV D) + AV Vpy — ADVpy ||(120))2
< [|AN(Vpy = Vo) (2@ + [[(AD = A®)pgV Dl|(120y) + [[(AD = AWV [|(2(ay)2
<Aooyl pr = p2 [l ) + 1A = AP [lpo ()| pgV D |22z + [[AY = AP || poe ([ P2 |30
< Merl|AD = A® || o) + [ gV D[ (L2 AT = AP || Lo ()

L+ N _
(B i) 1A= A2 e,

which completes the proof. 0O

Thus, we have shown that the pressure p and the velocity v are Lipschitz continuous with respect

to perturbations of the mobility tensor, measured by the L°° norm.

4. Numerical experiments. In this section we present numerical results for two different cases
covered by the stability analysis in §3. The first example illustrates the results of Corollary 3.1, while
the next case shows that certain problems may be less sensitive to mobility perturbations than what
is predicted by the estimates presented in §3. When presenting these experiments we solve the given
problems for a sequence of mobility tensors {A512)}n:0717..,. The corresponding pressure and velocity
solutions p; , and v; , are compared to the solutions p; and v; obtained for the fixed mobility tensor
AW,

Throughout this section we let ¢ = 0, i.e., there are no internal sources. Thus, we implement
injection and production in terms of the boundary conditions on I'y, and T'gy¢. In the context of
reservoir simulation, this situation corresponds to 2 being a vertical section that is placed between
two wells.

Based on the weak formulation (3.1), it is straight forward to define a conforming finite element
method for the pressure equation (1.1). The experiments reported below have been carried out for
bilinear shape functions on quadrilateral elements, where the values of p corresponding to the four
vertices of each element represent the degrees of freedom. The resulting linear system of equations
has been solved by the conjugate gradient (CG method combined with the ILU(0) preconditioner, see
Meijerink and van der Vorst [14]. We have then used the zero vector as initial guess and halted the
iterations as soon as [b — Ax*| < 1078, where x* denotes the kth CG iterate.

Independent of the experiments presented in §4.1 and §4.2, we have also solved the two model
problems with a mixed finite element procedure. As will be discussed at the end of this section, the
two alternative solution procedures lead to the same conclusions.

Using a superelement technique to construct the grid, the discontinuous behaviour of the mobility

tensor can be represented independently of the global mesh parameter h. That is, we define a coarse
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grid that has grid lines along the interfaces of any two adjacent layers in the reservoir . We also
ensure that grid lines are inserted to represent the change from one boundary condition to another,
i.e., at the interfaces between the noflow boundary segment I'¢jse and the remaining parts [y, and
Lout- The final grid used for computations is then generated by local refinement of each patch of the
superelement grid.

When viewed locally on a given element, the bilinear approximation of p makes each component
of the Darcy velocity v linear in one spatial variable and constant in the other. Since the input data
in (1.1), including the mobility tensor A, are assumed to be constant on each element, the norms
|p1 — p2||m1(q) and || vi — val[(z2(q))> in Corollary 3.1 can be computed analytically. Naturally, this
is also possible for the || A1) — A(2) ||z (q2) norm used in §3 to measure mobility perturbations.

Both for the conforming and the mixed method we have solved the problems on a series of grids
with decreasing mesh size. The results reported below correspond to the finest grid for each case, where
the computed stability measures seem to be reasonable estimates for the nondiscretized problem.

All computations have been carried out in double precision on HP 9000/735 workstations. The
implementations are based on the C++ class library Diffpack, which is under development at SINTEF
and the University of Oslo, see Langtangen [13] and [?].

4.1. Case I: A simple test problem. In Corollary 3.1, we have established the existence of

positive constants ¢; and ¢y independent of the mesh size h, such that

||P1 _p2||H1(Q) 1

AL —A@) |70 ’
(4.1) I Lo ()
[ vi — v lz2a)?

Ccy.

[[A(D) — A®) ||L°°(Q)

As in §3, p; and ps denote the weak solutions of the model problem corresponding to the mobility
tensors A and A(®)| respectively. In order to investigate these estimates experimentally, let us focus

on the following problem: Let Q = [0, 1]? be divided into three disjoint subdomains

Q; = [0.1,1] x [0.2,0.4],
Qy = 10,0.7] x [0.6,0.8]
and Qg — Q\(Qlqu),
for which we define the mobility tensor
[ 10-5 0 .
s 1mn Ql U Qg,
A _ I 0 10
10 .
in Q3.
0 1
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F1G. 1. The ratios ||p1 — p2,n ||H1(ﬂ) /||A(1) - Af‘) ||Loo(ﬂ) and ||vy —van ||(L2(n))2 /||A(1) - Af’) ||Loo(n) as functions

of n for case I.

Moreover, the sequence {Aﬁf)} is given by

A 1 5
AP = 0 1

A

in Ql U QQ,
in Qg,

where 6, = 272" for n = 0, 1,...,12. Consequently, Aﬁf) will quickly approach the fixed tensor A1)

as n increases, and A(1), A%Z) € Ajo-s,1410-5 for all values of n. The boundary conditions on

Iin = {(;731, 332); z1 =0 and z5 € [09, 1]},

{(z1,22); 21 =1 and z, € [0,0.1]}

and Toue =

are given by gin = —10 and poyt = 10. The effect of gravity is neglected.

Figure 1 shows the behaviour of the two ratios in (4.1) as functions of n. For the solutions
computed by the conforming finite element method with global mesh size h = 0.025, it seems clear
that the constants in (4.1) are at least ¢; & 655.7 and ¢3 & 113.0. For all n > 7, the computed ratios

are close to these bounds.

4.2. Case II: A vertical reservoir section. As for the previous case, we will investigate the
effect of mobility values varying on a fixed geometry. In order to relate the stability analysis to reservoir
simulation, we consider = [0, 1000] x [0, 20] as a vertical section of a reservoir. This domain is divided

into different layers

Q; = [0,300]x [0,4] U [400,1000] x [0, 4],
Q, = [0,700]x [8,14] U [800,1000] x [8, 14]
and Q3 — Q\(Ql UQQ),
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F1G. 2. The structure of the reservoir used in case II.

see Figure 2. We assume that the zy-axis points in the direction of gravity, i.e., we have VD = (0, 1)%,

while p = 1 and g = 9.81. The boundary conditions are fully specified by (1.2), where

(4.2) gin = —10 on Ty = {(21,22); 1 = 0 and z3 € [18,20]}
and
(4.3) Pout = 1000 on Toue = {(z1, 22); 1 = 1000 and z5 €[0,2]}.

In this experiment, we compute p; and v; for the fixed mobility tensor

2 0 .
0 10-* S
i —4 -8
A = 1010 in Q,
108 10-* ’
2 1 .
L in Q3.

That is, the layers Q; and €25 are low-permeable in one or both directions. Next we define the sequence

(AP} by

‘ 10 )

AD 45, in Q; UQy,
0

A in Qs,

for 8, =27", n=0,1,...,19. Thus, we have A1), Aﬁf) € Ajg-1_10-5,3 for all values of n .

Figure 3 shows the values of the ratios defined in (4.1) obtained for the present problem. These
results were computed on a grid with the largest element of size 25 x 0.5. The behaviour is quite
different from the previous case, where the upper bounds ¢; and ¢y seemed to be sharp for large n.

However, for the present case, the graphs in Figure 3 reach their maximum for n = 15, just before
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F1G. 3. The ratios ||p1 — p2,n ||H1(ﬂ) /||A(1) - Af‘) ||Loo(ﬂ) and ||vy —van ||(L2(n))2 /||A(1) - Af’) ||Loo(n) as functions

of n for case II.

they start to decrease monotonously. This indicates that the stability estimates in Corollary 3.1 hold
with ¢; ~ 4.82-10% and ¢y = 4.65 - 10°. That is, this particular problem is less sensitive to mobility
perturbations than what is predicted by the theory in §3. Given the relatively high complexity of the

present example, this observation is somewhat surprising.

4.3. Mixed finite element computations. As mentioned at the beginning of this section, the
two cases described in §4.1 and §4.2 have been solved also by a mixed finite element method. In this
way, we have a reasonable possibility to verify the results obtained with conforming elements.

Although there is a considerable interest in the use of mixed methods for problems in reservoir
simulation (see for example Douglas et al. [6] and Ewing and Wheeler [8]), it is in general not clear
whether such methods are preferable to conforming procedures. Falk and Osborne [9] have recently
showed that the mixed approach may be less accurate than conforming methods when applied to
two-dimensional second-order elliptic problems with rough coefficients.

Before discussing the actual computations, we outline the mixed formulation of our model problem.

The pressure equation (1.1) may be stated as a system of two first order equations

v.v = 1
(4.4) P
A v+Vp = pgVD

in Q, subject to the boundary conditions (1.2). As before, the entities A and v denote the mobility
tensor and the velocity vector, respectively. To derive a weak form of this mixed problem, we introduce

the spaces
H(div; Q) = {3 € (L*(Q))% V-9 € L}(Q)}
and

Ho(div; Q) = {¢p € H(div;Q); ¥ -n =0 on Iy UTeise } -
11



Using the test functions ¢ € L%(Q) and ¢ € Ho(div; Q), we obtain the standard mixed formulation of
the system (4.4):
Find (p,v) € L%(Q) x f](div; Q) such that
a(v,¥)+b(,p) = G) Vap € Ho(div; ),
b(v,9) = F(¢) Voe L} Q).

(4.5)

Here
ﬁ(div; Q) ={y € H(div;Q); ¥ -n =gjp on Iy and ¥ -n =0 on T},
while the bilinear forms are defined as

a(v,i,b):/ﬂ(/\_lv)-ibdx and b(i,b,p):—/ﬂ(v-i,b)pdm.

Finally, the linear functionals on the right hand side of (4.5) are given by
F(¢)=— | Lode and G(p)= / pgV D - b dz — / Pout (1 - n) ds.

QP Q Dout
When applying the mixed method to the test problems, we have used the same grid partitionings as
for the conforming method. However, in the mixed case we approximate the pressure p as a piecewise
constant function evaluated in the center of each element, while the velocity v is determined by the
values of v - n in the midpoints of each element side. As for the conforming method, each component
of v is linear in one spatial variable and constant in the other when viewed locally on a particular
element. Thus, the norms involved in the stability analysis can still be computed by exact integration.
The described mixed elements, which are often referred to as the lowest order Raviart-Thomas
elements (cf. [16]), correspond to a certain choice of finite-dimensional subspaces W C ﬁ(div; Q) and
Q C L%*(Q). These subspaces are known to be balanced in the sense that they fulfill the inf-sup

condition, i.e., there exists a constant 7 independent of the mesh size h such that

(4.6) inf sup b(%, ) >n>0.

9€Q ypew |10 llL2ll ¥ llaiv.a

Roughly speaking, this condition says that the velocity space must be chosen large enough for a given
pressure space. Moreover, these subspaces also satisfy

sup b(y,6) >0

9€Q
for all ¢ € W such that V-4 # 0. Together with (4.6) this inequality ensures numerical stability
of the method, cf. [1, 16]. For further details on alternative choices of mixed elements and their
corresponding subspaces, we refer to [2, 3, 16].

Let us now turn to the results obtained for the problems in §4.1 and §4.2. For the first case we

have compared the results produced by the two solution procedures using a grid with maximum mesh
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size h = 0.05. The ratios in (4.1) shows the same qualitative behaviour for the mixed method as
previously reported for the conforming solver, i.e., they are close to their respective upper bounds for
n > 7. However, the pressure ratio computed by the mixed method takes on much smaller values.
In fact, the estimated bound is then ¢; &~ 198.8, opposed to the value ¢; ~ 630.9 obtained for the
conforming method, see Figure 4. Presumably, this difference is due to incomparable representations
of the pressure solution. In the mixed case p is piecewise constant, thus neglecting the possibly large
values of Vp when computing the H! norm of the change of the pressure. This explanation is supported
by the comparison of computed velocities. Both methods represent the velocity by components that
are piecewise linear in one spatial variable and piecewise constant in the other!. This leads to the
estimated bounds ¢y & 114.6 and ¢3 =~ 113.1 for the mixed and conforming methods, respectively.
Turning to the second test problem, the computations have been performed for a grid with the
largest element of size 50 x 1. In contrast to the first case, the two methods produce almost identical
results even for the pressure ratio. For both norms, the curves reach their maximum value for n = 15

before they start to decrease monotonously, see Figure 5.
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FI1G. 4. The ratios ||p1 —p2,n || g1y /I1AC) = A% || Loo(q) and [|[vi = v n [ p2gay2 /1AM = AZ) || Loo(qy as a function

of n for case I1l. The symbols o and x denote the conforming and the mixed finite element solutions, respectively.

5. Concluding remarks. We have investigated the effect of mobility perturbations on the pres-
sure and velocity obtained for a typical two-dimensional pressure equation. Analytical estimates have
been derived that bound the changes in the pressure and velocity in terms of mobility perturbations
measured by the L norm.

Through a series of numerical experiments that allow the mobility to change in value we have
complemented the stability analysis. We have also observed that there are problems where the actual
md on these observations, one might argue that higher order mixed elements should be used in order to obtain
representative estimates for || p1 — p2,n ||H1(ﬂ)' However, in the context of reservoir simulation the vital entity is the
velocity v, which is used as input to other equations in the overall simulation process. We also note that the pressure

ratio obtained when applying the mixed solver to the second test problem are close to the values computed by the

conforming method.
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of n for case IIl. The symbols o and x denote the conforming and the mixed finite element solutions, respectively.

behaviour is less sensitive to mobility perturbations than what is indicated by the theory.
The numerical results have been verified by independent computations based on both conforming

and mixed finite element solutions of the test cases.
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