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1 Introduction

NSPACE is a package for methods in spatial statistics, implemented in C++4.
In this note, we present the methods for unconditional and conditional si-
mulation of nondivergent, isotropic vector fields, that are implemented.

In section 2, a definition of nondivergent vector fields is given. In section
3 and 4, the methods for unconditional and conditional simulation are pre-
sented, and in section 5 some examples are given. A verification of the
methods by simulation is presented in section 6. Some concluding remarks
are given in section 7.

The work is supported by The Research Council of Norway through the
research program no. STP 28402: “Toolkits in Industrial Mathematics”.

2 Non-divergent Vector Fields

Let V() = U(x) ¢ + V(@) j be a spatial random vector field in 2-D. It is
easily verified that this vector field will be non-divergent (V -V = 0) if it
is related to a random scalar field ¥ (&) through:

() R

The non-divergence property of V(@) is typical for vector fields representing
the velocity field of an incompressible fluid, and in this case ¥(x) is called a
stream function.

To specify the covariance matrix Fy (r,6) of a homogeneous, isotropic non-
divergent vector field, it is sufficient to specify a differentiable covariance
function for the longitudinal component Fy, ,, (see Hgst (1994)):

d 1 d
(2) Fy(r,0) = (Fyv,(r) — ar (r ervr))r_Qr"/ + ar (r Fy,v,) T,

where r = r cos# and V, is the component of V' along the direction of r. Hgst
(1994) also showed that Fy can be expressed in terms of a twice differentiable
covariance function Fy for the scalar field W:

(3) FV( ’
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Properties of the covariance matrix Fy are most easily expressed in lon-
gitudinal (V;-) or transversal (V4-) components, and by isotropy these two
components are uncorrelated. Further details and properties of random 2-D
velocity fields, as well as some references, are given in Hgst (1994).

3 Unconditional simulation

The routines for unconditional simulation are based on the specification of
a non-divergent random vector field, as described in section 1. Two algo-
rithms are implemented in NSPACE. In the first algorithm, the vector field
is computed from numerical differentiation of the corresponding simulated
scalar field W. In the second algorithm, the vector field is simulated directly
from a specification of the structure of covariance and cross-covariance of the
components of the field.

3.1 Differentiation of a simulated scalar field

Equation (1) suggests a two-step procedure for simulating the vector field.
At the first stage, a scalar field is simulated according to the specification of
the covariance structure of the field. At the second stage, the corresponding
non-divergent vector field is computed by numerical differentiation.

We assume that the scalar field ¥ is simulated on a grid lattice. The com-
ponents U; ; and V;; of the vector field V' are computed by

| [ 1 — |/
! AIQ ’
Vi1, — Wy
4 ‘/Z . — sJ sJ .

Here, ¥, ; is the simulated value of the scalar field in the grid lattice point
(¢,7), and Azy and Az, are the grid spacings in the two coordinate directions.

To achieve values for the vector field at the boundaries, the scalar field is
simulated in a grid augmented by one grid unit outside the original simulation
domain.

Simulation of a scalar field

Let ®4,...,®, be the coordinates of a set of points in R?. A random scalar
field ¥(x) is simulated at n locations by drawing from a multinormal distribu-

tion, ¥ ~ N(p,X), where p = (p1,... , ) and X = ((Cov(@;, ;)

1,7=1,... ,n)'



The field is assumed to be stationary and isotropic, implying that the covari-
ance function depends on the radial distance only:

(5) Cov(xy,22) = C(||er — 22||) = C(r).

A vector w of numbers from the standard normal distribution, w ~ N(0,I)
is simulated, and the scalar field is computed by

(6) ¥ =Lw+p,

where L is the Cholesky factor of X.

For locally smooth fields, characterized by a highly differentiable covariance
function, the Cholesky decomposition might fail because of numerical insta-
bility. This instability is resolved by adding a small number to the diagonal
element of 3 when the decomposition reaches a non-positive pivot element.

3.2 Direct simulation of the vector field

To simulate directly from the joint distribution of the components of the
vector field, we need to specify the covariance and cross-covariance functions
of the components. For a non-divergent, two-dimensional, isotropic vector
field, these can be computed from a scalar covariance function, as explained
in section 2. To get valid covariance functions, the corresponding scalar
covariance function C(r) must be twice differentiable for all r.

The field is simulated by a direct generalization of the scalar simulation
described in section 3.1, replacing ¥ by

(7) Y:(%)

where U and V are length n vectors of simulated values for the U- and V-
components of the vector field in the n points of the simulation domain.

The vector field is simulated from a multinormal distribution, Y ~ N(pty, Xy )
where

) o= (1),

and the covariance matrix Xy of Y is given by

Yov Tov
9 Ty = .
) Y ( vy Zvv )



The simulation is carried out as for a scalar field, replacing g and ¥ in
section 3.1 with gy and Xy.

An advantage of this method is that we can simulate for irregularly spaced
points, as well as for points on a grid lattice. But numerical problems might
arise if the points of the simulation domain are very close and the covariance
function is smooth, causing a (numerically) non-positive definite covariance
matrix. As mentioned for the scalar simulation in section 3.1, a modified
Cholesky decomposition is used in these cases, but this leads to approximate
solutions.

The covariance function
(10) c(r) = cOe_B(%) ,

where ¢ is the variance and R the range, is a typical example. This model
is not desirable, because it is infinitely many times differentiable.

By choosing carefully among the valid covariance models, one can reduce
this instability. But for the non-divergent vector field as defined in (1),
the number of available covariance models are limited, since the covariance
function is required to be twice differentiable.

A good choice is a model based on modified Bessel functions. The longitudi-
nal and transversal components of this model, as well as for the “gaussian”
type model defined in (10), are printed in figure 1. Examples of simulations
using both models are shown in section 5.

Another problem is that the Cholesky decomposition method is computatio-
nally expensive, and has shown to be stable only for a relatively small number
of points. The covariance matrix will be of dimensions (2N, Ny @ 2N, Ny),
increasing rapidly with the number of grid points.

4 Conditional simulation

A conditional simulation of a random field given data is a realisation of the
field constrained to reproduce the data at the data locations. For an isotropic
scalar field W, we can show that the isotropic scalar field and a non-divergent
vector field are always uncorrelated (Hgst, 1994). Therefore, we can not use
the scalar field approach of section 3.1 for conditional simulation.

The method implemented in NSPACE is instead based on the unconditional
simulation algorithm described in section 3.2, and kriging.

Consider a stationary random field Z(z), and observations Zo(z) at m lo-
cations @1,..., &, : Zo = (Z(@1),...,Z(@n)). Let Z(x) be the predicted

5



Gaussian type covariance function

Lo
o
_,,.‘—"""‘i'——rﬂé‘tazﬂs‘versal
LQ _____ .-
S
0.0 0.5 1.0 1.5 2.0
lag
Modified Bessel covariance function
Lo
o . .
Longitudinal
-------------- “Transversal
Lo
S
0.0 0.5 1.0 1.5 2.0
lag

Figure 1: Transversal and longitudinal components of the “gaussian” type
and modified Bessel function covariance models, with unit range.



value at @ based on the data Zy. We have

(11) Z(x) = Z(z) + (Z(2) - Z(z)).

Let Zs(«) be an unconditional simulation of the field, and let Zs(m) be the
predicted field based on the values of Zs at locations @1, ... ,@,. We replace
the error (Z(x) — Z(x)) in (11) by (Zs(®) — Zs(«)). Now, the resulting

random field

A

(12) Zos(®) = Z() + (Zs(x) — Zs(z))

will have the same first and second order properties as the original field Z (@)
(Ripley, 1981, pp.64-72). Also, Zes(®;) = Z(@;) = Zo;; t=1,... ,m, so the

observations are reproduced at the data locations.
Rewriting equation (12) gives

Zos(x) = Zs(z)+ (Z(zx) - Zs(z))
(13) = Zs(x)+ kY (2)27(Zo — Zos),

where ¥ is the m times m covariance matrix, and k(@) is a length m vector
with elements C(||® — @;||); 1 = 1,... ,m. Zgs is the vector of uncondition-
ally simulated values in the m locations.

Using equation (13), the conditional simulation of the field Z(@) is carried
out by

1. unconditional simulation in the simulation domain and at the data
locations, and

2. kriging prediction of the residuals (Zg(@;) — Zos(@;)); e =1,...

A wvector field can be simulated by a direct generalization of the above method
for scalar fields. Let

(14) Yo - (4]

be the vector valued random field. The components of the conditionally
simulated vector field, U(«) and V (@), can, in analogy to equation (13), be
computed by

(15) Uos() = Us(2) + ki ()25 (Yo — Yos)
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and

(16) Vos() = Vs(@) + ki (2)25' (Yo — Yos),
where

() = kuu(x) _ cov(U(x),U(x:))i=1,... N(U)
an kvl (kUV(x)) (cov(U(x),V(xj))jzle(V) )
and

1 hter= (B ) < (e ),

The numbers N(U) and N(V) are the number of conditions on the U- and
V-components, respectively. The data covariance matrix Xy is of dimension

(N(U)+ N(V),N(U) + N(V)), and is partitioned

EUU EUV
( ) Y ( EVU EVV )

The numerical problems arising from using the Cholesky decomposition me-
thod, might cause conditionally simulated values not interpolating the data
locations. The problem increases with an increasing number of points within
the simulation domain, or by increasing the range of the covariance.

5 Examples

5.1 Unconditional simulation

We have simulated several realisations of non-divergent vector fields by the
two methods described in section 3. The simulation domain is an equally
spaced 20 x 20 grid lattice on [0,1] x [0,1].

For the method computing the vector field by differentiation of a simulated
scalar field U (referred to as method 1), the scalar field is simulated from a
model with covariance function

o =4 (3) ()

where K is the modified Bessel function of order 2, and the parameters R
and S are the range and a scaling parameter (See Abrahamsen, p.44, for a

8



description of the properties of covariance functions based on modified Bessel
functions of general order).

One realisation of a resulting vector field is shown in figure 2.

For the direct simulation of the non-divergent vector field (method 2), we
need an expression for the covariance- and cross-covariance-functions for the
components of the field. Using (3), these are

1 L /8\, (1S SN ., (TSN 5
Foy = 5o <E) (rf (ﬁ)—(ﬁ)“(zz)%)

1 SN2 S S S
e = () () (7))
1 Sy S
Fov = 50 () Ko () e

where r, and r, are the components of the separating vector along the two
coordinate directions.

One realisation of a vector field simulated from this covariance model, and
with g = (0,0)7, is shown in figure 3.

For comparision, a realisation of a non-divergent vector field, simulated by
method 2 and using covariance functions derived from the covariance model
defined in (10), is plotted in figure 4. If we compare this field to the one
plotted in figure 3, we see that the modified Bessel function model gives a
less smooth realisation.

To check that the simulated fields have the expected covariance structure,
some longitudinal and transversal nonparametric semivariograms, averaged
over 200 realisations, are computed. These are compared to the theoretical
models. From (21) it is seen that for longitudinal (r, = 0) and transversal
(r; = 0) components of the covariance, the covariance functions are inde-
pendent of the direction of the separating vector r, and the cross-covariance
is zero. The semivariograms computed along these directions are therefore
easy to visualize.

The nonparametric semivariograms, ¥(h), where h is the lag, are computed

by (Cressie, p.75)
(22)

3(hi) = {N(lm 2 |- Z<w]->|<1/2>} /(0457 + 0.494/N(hy);

for k= 1,...,nl. N(hy) is the number of pairs of simulated values Z(x) in
lag interval number k, nl is the number of lags, and the sum is over all pairs
of simulated values with intermediate distance in lag interval k.

9



Plots of longitudinal and transversal average semivariograms along four ho-
rizontal directions are shown in figures 5 and 6 for method 1, and figures 7
and 8 for method 2.

The estimated semivariograms for method 1, seem to have a somewhat longer
range than what is defined in the specification of the model. This can be
related to the numerical differentiation (4) of the simulated scalar field. The
derivation algorithm has an effect similar to that of a filter, and a smoothing
of the field is introduced. We suppose that this effect will be reduced by
using a more dense grid lattice.

5.2 Conditional simulation

As suggested in section 2, the nondivergent vector field can be thought of
as a fluid velocity field. As an example, consider a velocity field that is to
be simulated on an equally spaced 20 x 20 grid on [0,1] x [0,1], under the
condition of zero perpendicular velocity at the upper and lower boundaries,

say V(2,0) =0 and V(2,1) = 0.

We have simulated 200 realisations of such a field, using the same model as
for the unconditional simulation presented in the previous section.

A realisation is shown in figure 9. As for the unconditional simulations, we
have computed longitudinal and transversal semivariograms, to check the
correspondence to the theoretical model. These semivariograms are plotted
in figures 10 and 11.

The variance for the transversal component tends to zero when approaching
the lines y = 0 and y = 1 because V(z,0) = 0 and V(z,1) = 0. The variance
of the U-component of the vector field seems unaffected by the conditions on
the V-component. This is because the transversal and longitudinal velocity
components are uncorrelated for a non-divergent field.

10



Differentiation of scalar field,
modified Bessel covariance
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Figure 2: A realisation of a vector field, computed by differentiation of a
simulated scalar field. The scalar field is simulated using the modified Bessel
function covariance model (20) with range R = 0.33 and unit variance.
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Direct simulation,
modified Bessel covariance
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Figure 3: A realisation of a vector field, computed by direct simulation using
the modified Bessel function covariance model (21) with range R = 0.33 and
unit variance.
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Direct simulation,
gaussian type covariance
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Figure 4: A realisation of a vector field, computed by direct simulation using
the “gaussian” type covariance model (10) with range R = 0.33 and unit
variance.
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Longitudinal semivariograms,
diff. of scalar field
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Figure 5: Longitudinal semivariograms for grid points at lines y=0.0, y=0.21,
y=0.47 and y=0.89, for the field simulated by method 1. The semivariograms
are averaged over 200 simulations. The solid lines are the theoretical model,
using the modified Bessel function covariance model, with range R = 0.33
and unit variance.
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Transversal semivariograms,
diff. of scalar field
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Figure 6: Transversal semivariograms for grid points at lines y=0.0, y=0.21,
y=0.47 and y=0.89, for the field simulated by method 1. The semivariograms
are averaged over 200 simulations. The solid lines are the theoretical model,
using the modified Bessel function covariance model, with range R = 0.33
and unit variance.
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Longitudinal semivariograms,
direct simulation
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Figure 7: Longitudinal semivariograms for grid points at lines y=0.0, y=0.21,
y=0.47 and y=0.89, for the field simulated by method 2. The semivariograms
are averaged over 200 simulations. The solid lines are the theoretical model,
using the modified Bessel function covariance model, with range R = 0.33
and unit variance.
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Transversal semivariograms,
direct simulation
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Figure 8: Transversal semivariograms for grid points at lines y=0.0, y=0.21,
y=0.47 and y=0.89, for the field simulated by method 2. The semivariograms
are averaged over 200 simulations. The solid lines are the theoretical model,
using the modified Bessel function covariance model, with range R = 0.33
and unit variance.
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Conditional simulation,
modified Bessel covariance
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Figure 9: A realisation of a vector field, computed by conditional simulation
using the modified Bessel function covariance model (21) with range R = 0.33
and unit variance.
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Longitudinal semivariograms
conditional simulation
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Figure 10: Longitudinal semivariograms for grid points at lines y=0.05,
y=0.21, y=0.47 and y=0.95, for the field computed by conditional simu-
lation. The semivariograms are averaged over 200 simulations. The solid
lines are the theoretical model, using the modified Bessel function covariance
model, with range R = 0.33 and unit variance.

19



Transversal semivariograms
conditional simulation
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Figure 11: Transversal semivariograms for grid points at lines y=0.05,
y=0.21, y=0.47 and y=0.95, for the field computed by conditional simu-
lation. The semivariograms are averaged over 200 simulations. The solid
lines are the theoretical model, using the modified Bessel function covariance
model, with range R = 0.33 and unit variance.

20



6 Verification of the program by simulation

The aim of this section is to check that a realisation of a stochastic vector
field, simulated conditionally by the method implemented in NSPACE, has
the correct covariance structure.

Consider the example described in section 5.2. In this section, we will use
the same model, but the simulation domain, D, will be reduced to an equally
spaced 5 x 5 grid on [0, 1] x [0, 1], instead of the 20 x 20 grid of section 5.2.
The parameters of the covariance function (20) are set to R = 1 and % = 1.

We consider the non-divergent random vector field

{U(z,y),V(e,y); (®,y) € D},

simulated conditionally on V(«,0) = V(&,1) = 0. Arrange the components
of U and V into a vector

Z = {U(0,0),0(0.25,0),... ,U(1,1),V(0,0),V(0.25,0),..., V(I,1)}.
Partition Z into (Zy, Zy), where

7y = {V(0,0),V(0.25,0),...,V(1,0),V(0,1),V(0.25,1),... ,V(1,1)}
and

Zy = {U(0,0),U(0.25,0),... ,U(1,1),
(23) V(0,0.25), V(0.25,0.25), ... , V(1,0.75)}.

Now, Z; consists of the 10 components of Z with conditions, and Z, consists
of the remaining 40 components of Z. The covariance matrix of Z, given Z;
is

(24) EZ2|Z1 = EZz - 2227Z1E§11,Z1221722'

To check that a realisation of the conditionally simulated stochastic field
has the correct covariance structure, 1000 realisations of Z, given Z; are
simulated. Then, the sample covariance matrix of Z; given Z; is compared
to the theoretical covariance matrix.

The covariance matrix of W = 2221(221 75 is the identity matrix. Denote the

sample covariance matrix of W by ¥, and consider
(25) M = V/1000(2y — 1),

where [ is the identity matrix. Now, each element of M has expectation
zero. Also, the diagonal elements of M have variance 2 and the non-diagonal
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elements have variance 1. This can be exploited to assess the deviation of
Yw from I.

The sample mean and variance of the diagonal elements of M are 0.266 and
1.270, and the corresponding values for the off-diagonal elements are —0.0279
and 1.017.

A

The matrix M’ = %(ZW — I) =~ M will be Wishart distributed,

M’ ~ Wio(1,999).
For the diagonal elements of M we have

V1000 * diag(M); ~ 1.0 * X2go-

Figure 12 shows a Q-Qplot of the elements of diag(M) vs. quantiles of the
1/4/999 # x2go-distribution.

Histograms of the off-diagonal elements, M;;; ¢ # j, and the diagonal ele-
ments of M are shown in figure 13.

The sample variance of the diagonal elements is quite small, compared to
the expected value, which is 2. Also, the Q-Qplot seems to deviate from the
line y = z. To get an indication of the magnitude of the simulation variance,
1000 realisations of a multionormal model, with covariance matrix (24), are
simulated 4 times. The sample mean and variance of diag(M) are computed
for each run, and some results are listed in table 1.

Run | Sample mean | Sample variance
1 -0.0137 2.201
2 -0.236 2.667
3 -0.0636 1.843
4 -0.0029 1.573

Table 1: Sample mean and variance for the diagonal of M in (25), for 4
realisations of a series of 1000 simulations from a conditional multinormal
distribution.

On the basis of these investigations, the conditional simulation module of

NSPACE seems correct.
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Figure 12: Q-Qplot for diagonal elements of the standardized sample covari-
ance matrix, M, vs. quantiles of the 1/1/999 * y2g,-distribution. The solid
line is the line y = x. A line fitted by least squares to the Q-Qplot, has slope
0.78 and intercept 0.23.
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Figure 13: Histograms of the off-diagonal and diagonal elements of the stan-
dardized sample covariance matrix M.
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7 Conclusions

We have described the methods for unconditional and conditional simula-
tion of non-divergent vector fields in NSPACE. The methods are based on
Cholesky decomposition of a covariance matrix. Since this decomposition
is computationally expensive, these methods are suitable only for relatively
small problems. Methods based on the Fourier transform or the turning
bands method are probably more suitable for large problems. The Cholesky
decomposition method is also sensitive to the smoothness of the field to be
simulated. This problem can be resolved by choosing carefully among valid
covariance models. A covariance model based on modified Bessel functions
has been shown to have desirable properties in that respect.
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