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mproved resolution in Bayesian lithology/fluid inversion from prestack
eismic data and well observations: Part 1 — Methodology
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ABSTRACT

The focus of our study is lithology/fluid inversion with
spatial coupling from prestack seismic amplitude variation
with offset �AVO� data and well observations. The inversion
is defined in a Bayesian setting where the complete solution
is the posterior model. The prior model for the lithology/fluid
�LF� characteristics is defined as a profile Markov random-
field model with lateral continuity. Each vertical profile is
further given as an inhomogeneous Markov-chain model up-
ward through the reservoir. The likelihood model is defined
by profile, and it relates the LF characteristics to the seismic
data via a set of elastic material parameters and a convolution
model. The likelihood model is approximated. The resulting
approximate posterior model is explored using an efficient
block Gibbs simulation algorithm. The inversion approach is
evaluated on a synthetic realistic 2D reservoir. Seismic AVO
data and well observations are integrated in a consistent man-
ner to obtain predictions of the LF characteristics with associ-
ated uncertainty statements. The predictions appear very reli-
able despite the approximation of the posterior model, and er-
rors in seismic data are the major contributions to the uncer-
tainty. Resolution of the inversion is improved considerably
by using a spatially coupled prior LF model, and LF units of
1–3 ms thick can be identified even with a seismic signal-to-
noise ratio of two. The inversion results appear robust toward
varying model parameter values in the prior model as a result
of the discretization of LF characteristics and seismic data
with good spatial coverage.

INTRODUCTION

Predicting lithology/fluid �LF� characteristics in a petroleum res-
rvoir with associated uncertainty is important when developing re-
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erves. Normally, LF characteristics are predicted based on geologic
nderstanding of the reservoir combined with well observations and
eismic data. The classification problem is ill posed because several
F configurations may produce the same seismic data. The objective
f our study is to infer LF classes in a target zone, given well obser-
ations and seismic amplitude variation with offset �AVO� data. The
nversion is defined in a Bayesian setting where prior knowledge
bout the LF characteristics is combined with information contained
n the observed data.

Bayesian frameworks are commonly used to invert LF character-
stics from prestack seismic data. In Eidsvik et al. �2004�, the inver-
ion is defined in a horizontal 2D setting where the prior is a Markov
andom field. In this horizontal 2D model, vertical couplings result-
ng from convoluting the seismic data are ignored.Amultivariate ap-
roach to fluid-unit inversion is presented in Contreras et al. �2005�.
he inversion methodology is applied to a real data set in a thorough
mpirical study. Their spatial model appears to be Gaussian and con-
inuous. In Larsen et al. �2006�, the inversion is defined in a 1D verti-
al setting where the vertical dependencies within the LF classes are
odeled as a Markov-chain prior model. The inversion is solved ap-

roximately, including vertical deconvolution of the seismic data. In
uland et al. �2008�, the inversion is solved in a 3D setting using a
ertically coupled likelihood model and a locationwise �or based
pon location� prior model, which entails that no prior spatial infor-
ation about the LF classes is taken into account. In González et al.

2008�, an algorithmic approach to lithology inversion from stacked
eismic data is defined. The approach is based on a multipoint spatial
rior model for lithology and sequential trial-and-error conditioning
o the seismic data. The conditioning procedure may be very com-
uter demanding and is expected to be unfeasible for high-dimen-
ional AVO seismic data needed to classify fluid filling. Moreover,
he efficiency of the conditioning is unclear because of lack of for-

ality in defining the algorithm. In Bosch et al. �2009�, stacked seis-
ic data and well observations are combined in a spatial model, but

nly porosity and saturation are modeled as continuous variables in a
aussian setting. For a thorough introduction to LF inversion from

eismic data, see Avseth et al. �2005�.
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R22 Ulvmoen and Omre
In our current study, the inversion is solved using a categorical,
patially coupled prior model for the LF classes. This model formu-
ation appears to be more in accordance with geologists’understand-
ng of the reservoir geometry; moreover, LF observations in wells
ave influence beyond the well locations. One particular focus is
dentifying thin, laterally extensive features of the reservoir, defined
n our study as shale units. A categorical, spatially coupled prior

odel for the LF classes will improve resolution in the inversion.
The target zone is discretized into vertical profiles and lateral hori-

ons. Vertical couplings of the LF classes are modeled by a Markov-
hain prior model. Lateral continuity of the LF classes in the hori-
ons is further modeled by a profile Markov random-field model. We
ssume the 3D LF model falls within the class of Markov random
elds �see Winkler, 1995�.AMarkov random field is defined by a set
f local continuity measures, and it enforces some spatial smooth-
ess on the posterior model. The local nature of the model provides
exibility to reproduce spatially varying proportions and continuity
irections and to adapt to data with good spatial coverage. Moreover,
he continuity couples the spatial data and, hence, reduces the effect
f noise in the data. These features are favorable for inverting seis-
ic data and well observations into LF classes.
The likelihood model is approximated such that the upward-

ownward algorithm used to assess the posterior model in Larsen et
l. �2006� can be used to explore the vertical profiles. Laterally, a
lock Gibbs simulation algorithm is used. Realizations and predic-
ion of the most probable combination of LF classes with associated
ncertainties can be assessed by simulation-based inference. Our
tudy draws heavily on previous work on seismic AVO inversion
Buland and Omre, 2003a; Larsen et al., 2006�.

The major contribution of our study is to expand the model in
arsen et al. �2006� into three dimensions, where lateral continuity
f the LF classes is modeled. We demonstrate that by modeling later-
l continuity, considerably better resolution in LF class prediction
an be obtained. The inversion approach is evaluated empirically on
ynthetic seismic data. The approach is further evaluated on real
eismic data from a reservoir offshore Norway in Ulvmoen et al.
this issue�.

NOTATION

We denote the target zone in three dimensions by D and let it be
iscretized by the lattice LD divided into vertical profiles and lateral
orizons. The profiles are discretized downward by the regular lat-
ice LD

t :�1, . . . ,T�, where the two-way reflection time t corresponds
o the seismic sampling. The lateral horizons are further discretized
y the regular lattice LD

x , with LD
x corresponding to the seismic-sur-

ey positions.
The LF characteristic in lattice node �x,t��LD is denoted as � x,t,

iscretized into a set of LF classes � x,t � �� 1, . . . ,�L�. The complete
et of LF classes in the 3D target zone is further represented by
:�� x,t;�x,t��LD�.
We assume well observations to be available along vertical well

rofiles at n well locations represented by K�LD
x , which coincide

ith some of the lattice locations in LD
x . The well data are denoted by

w; they contain information about the LF classes at t�LD
t along the

ell profiles. The well observations originally were observed on a
Downloaded 18 May 2010 to 156.116.8.60. Redistribution subject to S
ner depth resolution, and conversion into the current time resolu-
ion must be made. The uncertainty in this conversion should be cap-
ured by the well likelihood model.

The seismic data are assumed to be true-amplitude processed such
hat the prestack amplitudes represent band-limited primary reflec-
ion strengths. The data are also assumed to be prestack migrated and
ransformed from offsets to reflection angles. The seismic prestack
ather is represented by ds containing the seismic samples in LD for a
et of reflection angles �:�� 1

� , . . . ,� n
� �. The uncertainty of this prepro-

essing should be captured by the seismic likelihood model. The
oint well observations and seismic data are denoted by d:�dw,ds�.

An isotropic, elastic medium is completely described by three
lastic parameters: P-wave velocity, S-wave velocity, and density.
o link the LF classes and the seismic data, elastic properties are de-
ned at each location in LD. Let mx,t represent the log transform of

he three elastic parameters in lattice node �x,t��LD. The complete
et of elastic parameters is represented by m:�mx,t;�x,t��LD�.

The term p� · � is used as a generic term for probability. In particu-
ar, p�� x,t� denotes the probability for the various LF classes � x,t

�� 1, . . . ,�L�. Correspondingly, p��� is a multivariate probability
or �, the complete set of LF classes. For discrete variables, p� · � will
e the probability mass function �PMF�, although it will be the prob-
bility density function �PDF� for continuous variables. Moreover,
he probability for � given d is denoted by p�� �d�.

STOCHASTIC MODEL

The objective of our study is to predict the LF characteristics in a
arget zone from well observations and seismic prestack data. We do
his in a Bayesian setting, combining available prior knowledge
bout � with the information contained in the data d. In this setting,
he complete solution is the posterior model, which is expressed as

p���d��const� p�d���p���, �1�

here p�d ��� is the likelihood model and p��� is the prior model.
he constant is a normalizing constant that is usually difficult to de-

ermine; hence, the posterior model is normally explored through
tochastic simulation where direct calculation of the constant is
voided. From the posterior model, the probability of any combina-
ion of LF classes in the target zone can be calculated; in particular,
he most probable combination can be identified. It is also possible to
enerate a set of realizations of the LF characteristics representing
he prediction uncertainty. These realizations can be considered as
ossible LF configurations.

ikelihood model

The likelihood model defines the likelihood of the LF classes giv-
n well observations and seismic data. We assume the well observa-
ions and seismic data are to be collected independently; this entails
onditional independence between well and seismic data, expressed
EG license or copyright; see Terms of Use at http://segdl.org/
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y

p�d����p�dw���p�ds���, �2�

here p�dw ��� is a well likelihood model and p�ds ��� is a seismic
ikelihood model.

The well likelihood model is defined from locationwise observa-
ions of LF characteristics along the well profiles, given by

�dx,t
w ��x,t����x,t

�ex,t
w , �3�

here ��x,t
is the expected well observation response for LF class

x,t and ex,t
w is a spatially independent Gaussian error term. The rela-

ion defines the likelihood model

p�dw���� �
x�K

�
t

p�dx,t
w ��x,t�, �4�

here K are the well locations in LD
x and the product in t is taken over

D
t .
Adecomposition such as in Larsen et al. �2006� is used in the seis-
ic likelihood model. It is expressed as

p�ds����	 . . .	 p�ds�m�p�m���dm, �5�

here p�ds �m� is a seismic likelihood model and p�m ��� is a rock-
hysics likelihood model. The integral is over the three elastic pa-
ameters in the target zone; hence, it is computationally demanding
o determine.

The rock-physics likelihood model can be factorized as

p�m�����
x

�
t

p�mx,t��x,t�, �6�

ith x taken over LD
x and t taken over LD

t when not explicitly ex-
ressed. Hence, the rock-physics model is assumed to depend only
n colocated LF variables �see Avseth et al., 2005�.

The relation between ds and m is defined by the vertical convolu-
ion model as in Buland and Omre �2003a�:

�ds�m��WADm�e, �7�

here A is a matrix of angle-dependent, weak-contrast Aki-
ichards coefficients �see Aki and Richards, 1980�, D is a differen-

ial matrix giving the contrasts of the elastic properties in m, W is a
lock-diagonal convolution matrix containing one wavelet for each
ime-angle gather, and e is Gaussian observation error. Using this re-
ation, the seismic likelihood model is expressed as in Larsen et al.
2006�:

p�ds�m��const�
p*�m�ds�

p*�m�
, �8�

here const is a general constant and p
*
�m �ds� and p

*
�m� are

aussian posterior and prior PDFs for linearized Zoeppritz AVO in-
ersion �see Buland and Omre, 2003a�. The posterior PDF p

*
�m �ds�

an be calculated extremely fast in the Fourier domain �see Buland et
l., 2003�. The justification for the decomposition is discussed in
arsen et al. �2006�.
Downloaded 18 May 2010 to 156.116.8.60. Redistribution subject to S
rior model

The prior model contains a priori knowledge about the 3D LF
haracteristics in the reservoir before any observations are made.
orizontally, we expect the LF characteristics to have extensive

ontinuity, isotropic or anisotropic. The LF characteristics are fur-
her expected to appear in certain sequences vertically because
ithologies are generated by sedimentary processes and fluids are
egregated by gravity. Hence, the ordering of LF classes should be
odeled nonsymmetrically and nonstationary in the vertical direc-

ion. To model this a priori information about the LF classes, we de-
ne the prior model to be a profile Markov random field.
The profile Markov random field is defined by

p��x���x��p��x��y;y�� �x��; all x�LD
x , �9�

here �x:�� x,t;t�LD
t � is a vertical LF profile in an arbitrary x in LD

x ,
�x:��y;y�LD

x ,y�x� is the set of all LF profiles except �x, and
�x� is a fixed neighborhood around x in LD

x . Hence, given all LF
lasses in the target zone except in profile �x, the LF profile �x is de-
endent only upon the LF profiles in a predefined neighborhood
�x� around x. According to the Hammersley-Clifford theorem, the

et of all conditional models fully specifies the Markov random field
p��� �see Winkler, 1995�.

To model vertical orderings of the fluids, we let the LF profiles �x

e defined by nonhomogeneous Markov-chain models upward
hrough the target zone:

p��x��y;y�� �x����
t

p��x,t��x,t�1,�y,t;y�� �x��;

all x�LD
x , �10�

ith p�� x,T �� x,T�1,� y,T;y�� �x���p�� x,T �� y,T;y�� �x�� for no-
ational convenience. This Markov-chain model corresponds to the

odel in Larsen et al. �2006�, where it is demonstrated to be reliable
n modeling petroleum reservoirs.

The upward transition probabilities for LF classes between two
orizons in a profile, i.e., from t�1 to t, can be expressed as the tran-
ition matrix Pt�� y,t;y�� �x��, where the elements are the condi-
ional p�� x,t �� x,t�1,� y,t;y�� �x�� for all configurations of
� x,t,� x,t�1�. The transition matrices are dependent on the time refer-
nce t through �� y,t;y�� �x��; hence, the Markov chain is nonho-
ogeneous.
InAppendix A, we demonstrate that the assumptions made for the

rofile Markov random field entail that

p��x,t����x,t���p��x,t��x,t�1,�x,t�1,�y,t;y�� �x��;

all �x,t��LD, �11�

ith ���x,t�:�� y,s;�y,s��LD,�y,s�� �x,t��. Hence, � is a Markov
andom field in the traditional sense �see Winkler, 1995�. This prop-
rty can be used to ensure that the prior model is consistent in a prob-
bilistic sense.

There are, however, several advantages in defining the prior mod-
l as a profile Markov random field. Dependency structures in the
ateral and vertical directions are clearly separated, which is suitable
or reservoir modeling. Dependencies in the vertical direction can be
ormulated as a nonsymmetric, nonstationary Markov chain suitable
or modeling sedimentary processes and gravity segregation of flu-
ds. Furthermore, a simulation algorithm that allows analytical treat-

ent in the vertical direction and requires only an iterative proce-
EG license or copyright; see Terms of Use at http://segdl.org/
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R24 Ulvmoen and Omre
ure in the horizontal domain can be defined. However, the local na-
ure of Markov random fields makes them very flexible, which com-
licates simulation when conditioning information is not available.

The prior profile Markov random-field model is defined with ref-
rences in an orthogonal system of axes. Continuities in petroleum
eservoirs do not necessarily coincide with these axis directions. Li-
hology continuity mostly follows structural surfaces; fluid continu-
ty mostly follows lateral gravity surfaces. Moreover, expected pro-
ortions of lithologies and fluids often have vertical trends. The local
ature of the profile Markov random-field definition adapts to differ-
nt continuity directions and expected proportion trends. The neigh-
orhood � �x� can be extended, and the neighborhood influence of
he transition probabilities can be different for lithologies and fluids
o account for different continuity directions. Local adaption of the
ransition probabilities can also capture varying expected propor-
ions of LF classes. Some of these features of the prior model are
emonstrated in the real case study in Part II of this paper �Ulvmoen
t al., this issue�.

The assessment of the transition probabilities in the prior model is
f course a challenge. The vertical transitions can be inferred from
ell observations, but lateral dependencies must be determined

rom outcrop studies or training images. Estimation of model param-
ters in Markov random fields is frequently discussed in statistical
iterature �see Winkler, 1995�. If training images are available, we
ecommend using a pseudolikelihood approach to assess model pa-
ameters. Finally, varying expected proportions must be inferred
rom regional geologic understanding.

osterior model

The posterior model is uniquely defined by the likelihood and pri-
r models. It is given by

���d��const� �
x�K

�
t

p�dx,t
w ��x,t�

�
	 . . .	 p*�m�ds�

p*�m� �
x

�
t

p�mx,t��x,t�dm�p���,

�12�

here const is a normalizing constant. The normalizing constant de-
ned by ��p�� �d��1 is computationally demanding to determine
ecause it is the sum over all combinations of LF classes in the target
one. The integral is over all configurations of the three elastic pa-
ameters in the target zone; hence, it is very difficult to determine.An
pproximation along the lines of Larsen et al. �2006� makes the ex-
ression partly analytically tractable and reduces the dimension of
he integral.

In the approximation, the Gaussian PDFs p
*
�m� and p

*
�m �ds� are

alculated based upon profile �profilewise�. Further, correlations
ithin mx and �mx �dx

s� are ignored, and only the diagonal elements
f the covariance matrices in the Gaussian PDFs p

*
�mx� and

*
�mx �dx

s� are used. This approximation is proven reliable in the 1D
ase in Ulvmoen and Hammer �2010�, where it is demonstrated that
he approximation captures between 50% and 90% of the informa-
ion content in the likelihood for typical seismic inversion problems.

The approximate posterior model is expressed
Downloaded 18 May 2010 to 156.116.8.60. Redistribution subject to S
p̃���d��const� �
x�K

�
t

p�dx,t
w ��x,t��

x
�

t

l�dx
s ��x,t�p���,

�13�

here

l�dx
s ��x,t��			 p*�mx,t�dx

s�

p*�mx,t�
p�mx,t��x,t�dmx,t �14�

s the approximated likelihood model. The recursive algorithm in
arsen et al. �2006� can now be applied; the integral is of dimension

hree and numerically tractable.
The prior model follows a Markov random-field model. Hence,

ith a likelihood function that factorizes, we know �Winkler, 1995�
hat the associated approximate conditional posterior model can be
xpressed as

p��x���x,dx�



const��t

l�dx
s ��x,t�p��x,t��x,t�1,�y,t;y�� �x��;

all x��K

const��t
p�dx,t

w ��x,t�l�dx
s ��x,t�p��x,t��x,t�1,�y,t;y�� �x��;

all x�K
�

�15�
ith the set �K containing all elements in LD

x except the ones in K,
.e., all horizon locations except the well locations. We use this block

arkov formulation of the posterior model to define an efficient
imulation algorithm.

ASSESSMENT OF POSTERIOR MODEL

In expression 15, conditional posterior models are defined for all
�LD

x . These conditional posterior models are on the same form as
he 1D posterior model in Larsen et al. �2006� except for the inhomo-
eneneity in the prior model. The upward-downward recursive algo-
ithm used to explore the posterior model in Larsen et al. �2006�,
owever, is also valid for nonhomogeneous Markov-chain prior
odels �see Chib, 1996�. Hence, the conditional model in expres-

ion 15 can be simulated exactly by the efficient upward-downward
ecursive algorithm. Laterally, a block Gibbs simulation algorithm
ay be used because the profile Markov random field is specified by
complete set of multivariate conditional models. In the Gibbs sim-
lation algorithm, direct computation of the normalizing constant is
voided.

The Gibbs simulation algorithm is described fully in Appendix B,
nd an outline of the algorithm follows.

imulation algorithm

nitiate

Generate arbitrary �

terate

Draw x uniform randomly from LD
x

Generate �x from p̃��x ���x,dx� by the
upward-downward simulation algorithm

The algorithm converges such that, in the limit, � will be a realiza-
ion from p̃�� �d�. Although the model is defined in three dimen-
EG license or copyright; see Terms of Use at http://segdl.org/
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ions, the iterative Gibbs simulation algorithm only operates in two
imensions. The third dimension is simulated exactly by the very
ast recursive upward-downward algorithm. To have all grid nodes
pdated once, also termed one sweep, the number of operations is
roportional to the square of the number of LF classes times the
umber of grid nodes in LD. The convergence rate of the algorithm is
ighly model specific and it will be discussed in the following sec-
ion.

SYNTHETIC EMPIRICAL STUDY

In the empirical study on a realistic synthetic test case, we focus
n two aspects. First, we evaluate the general quality of the inversion
pproach. The LF characteristics are simulated and predicted from
eismic AVO data with low signal-to-noise ratio �S/N� and from a
eismic AVO signal without observation error. Second, we evaluate
he ability to identify thin, laterally extensive layers of shale. This
dentification is made possible by improved resolution in the inver-
ion. These thin layers of shale are particularly important because
hey greatly impact fluid flow.

We perform an empirical study on a reference 2D synthetic reser-
oir that we have made manually. The reference reservoir � contains
he four LF classes: gas-saturated sandstone, oil-saturated sand-
tone, brine-saturated sandstone, and shale �Figure 1�. The target
one is defined from 2000 to 2284 ms vertically, discretized into
nits of 1 ms, corresponding to the seismic sampling density; hence,
�284. Horizontally, 100 common-midpoint �CMP� profiles are
onsidered. The synthetic reference reservoir is thicker than usual
eservoirs, and it contains several sequences of shale and sandstone
ith separate fluid regimes. This vertical repeatability is enforced to

andomize over error terms and to minimize border effects on top
nd bottom caused by the convolution. The proportions of the four
F classes — gas-, oil-, and brine-saturated sandstone and shale —
re �0.18, 0.23, 0.37, 0.22�. In the reservoir, many layers of shale are
hin with variable lateral extensions. These shale layers, ranging
–3 ms thick, are much thinner than in Larsen et al. �2006� and far
elow what is normally referred to as seismic resolution of approxi-
ately 10 ms.
The prior model is defined as a profile Markov random field, with

he profiles defined as inhomogeneous Markov-chain models up-
ard through the reservoir as described earlier. We term this model a
D Markov random field. The transitions up the profiles in x�LD

x ,
iven the rest of the field, are expressed as the transition matri-
es Pt�� y,t;y�� �x��, where the elements are the conditional
�� x,t �� x,t�1,� y,t;y�� �x�� for all �4�4� configurations of
� x,t,� x,t�1�.

We consider a first-order neighborhood in each lateral direction
uch that � �x�� �x�1,x�1�, giving 16 possible neighborhood
onfigurations. By lateral symmetry, the number of configurations is
educed to 10. The transition matrices are constructed such that most
robability is assigned to transitions into LF classes identical to the
eighboring ones and low probability to other transitions. The tran-
ition matrix neighbored by oil-saturated sandstone and shale is, for
xample,

PSO,SH
t ��

0.0005 0 0 0.9995

0.0002 0.4999 0 0.4999

0.0002 0.4998 0.0002 0.4998

0.0002 0.4998 0.0002 0.4998
�,
Downloaded 18 May 2010 to 156.116.8.60. Redistribution subject to S
ith rows and columns corresponding to gas-, oil-, and brine-satu-
ated sandstone and shale, respectively. The transitions with zero
robability in the matrix are the same as in Larsen et al. �2006�, and
hey ensure ordering of the fluids according to gravity. These transi-
ion matrices are specified independent of the reference reservoir,
nd the intent is to capture prior knowledge about lateral continuity
f LF variables and vertical fluid ordering. We use the limiting distri-
ution of the transition matrices as initial distributions.All transition
atrices and corresponding limiting distributions are fully de-

cribed inAppendix C.
If we average these ten transition matrices and compute the corre-

ponding limiting distribution, we obtain �0.35, 0.18, 0.12, 0.35�.
his distribution can be seen as an approximation of the prior pro-
ortions of gas-, oil-, and brine-saturated sandstone and shale, im-
licitly defined by the prior model. These proportions deviate con-
iderably from the proportions in the reference reservoir: �0.18, 0.23,
.37, 0.22�. We use schematic prior transition matrices that capture
ateral LF continuities and vertical fluid orderings. If training images
re available, these transition matrices can be assessed by a pseudo-
ikelihood approach �see Winkler, 1995�.

In Larsen et al. �2006�, the inversion model is defined profilewise,
nd the approximate posterior model is calculated exactly by the re-
ursive upward-downward algorithm. In our study, a more time-
onsuming Gibbs sampling must be used. We also apply the profile-
ise Markov-chain prior model defined in Larsen et al. �2006� and

ompare the results to the 2D prior Markov random-field model of
he current study. For the profilewise Markov-chain prior model, the
tationary transition matrix is calculated from the reference reser-
oir. The transition matrix and corresponding limiting distribution
re specified in Appendix C. We also use a locationwise prior model
ithout spatial coupling �see Larsen et al., 2006�. In this prior model,

he limiting distribution in the profilewise Markov-chain model is
sed. This limiting distribution corresponds to the fraction of each
F class in the reference reservoir.
We use well observations in two well locations K:�20,80�. The

ell observations dw are exact observations of LF classes along the
rofiles presented in Figure 2. The proportions of the four LF classes
n the well observations are �0.15, 0.19, 0.30, 0.36�, which are fairly
ifferent from the reservoir proportions. The shale content is more
han 1.5 times larger in the wells than in the entire reservoir. This de-
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R26 Ulvmoen and Omre
iation is caused by sampling uncertainty because the wells only
over 2% of the lattice nodes. The well likelihood model is defined
rom exact locationwise observations of these LF characteristics.

The rock-physics likelihood model p�mx,t �� x,t� is a function in
he three elastic parameters — P-wave velocity, S-wave velocity,
nd density — for each LF class. As in Larsen et al. �2006�, a set of
epresentative samples from a probabilistic rock-physics model is
efined to link the LF classes and the elastic parameters. The sam-
les are presented in Figure 3. The elastic properties corresponding
o the reference reservoir are obtained by using the mean value of
mx,t �� x,t� from the samples at each location and adding appropriate
eterogeneity to make m appear realistic. The mean values for
-wave velocity, S-wave velocity, and density are �3141, 1794,
182�, �3199, 1758, 2274�, �3365, 1749, 2312�, and �3521, 1894,
555� �in m/s, m/s, kg/m3� for gas-, oil-, and brine-saturated sand-
tone and shale, respectively.

The seismic likelihood model p�ds �m� is defined by a profilewise
ki-Richards convolutional model as in Buland and Omre �2003a�.
he seismic signal is generated profilewise for the five incidence an-
les �� �0° , 10° , 20° , 30° , 40° � and a Ricker wavelet with fre-
uency of 30 Hz and length of 61 ms discretized over LD

t for all
ime-angle gathers. Note that the model accounts for angle-depen-
ent wavelets if that is required. The observation error contains a
ixture of zero-mean vertical-wavelet colored noise and white

oise �see Buland and Omre, 2003a�, and the variance in the colored
oise is 100 times the variance in the white noise. The observation
rror is generated profilewise, then added to the seismic signal re-
ulting in the seismic data. The S/N in the seismic data is calculated
s the ratio between the variance in the seismic signal and the vari-
nce in the observation error, and the value is 2.0.

Figure 4 displays the synthetic prestack seismic data ds. This data
et is based on the empirical rock-physics model, a convolutional
inearized Zoeppritz model, and a wavelet colored error term. The
rror term captures randomized uncertainty in the data, but system-
tic errors in the forward seismic model are not accounted for. For
hin LF units and large angles above 30°, the systematic errors may
ave some impact �see Mallick, 2007�, but this is ignored here. Real
eismic data must be preprocessed to obtain AVO seismic data, and
he uncertainty associated with this is assumed to be captured in the
rror term. Exact assessment of the parameters in these error terms is
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igure 2. Well observations dw in K:�20,80�.
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f course difficult; but if reliable well observations are available,
hese parameters can be estimated �see Buland and Omre, 2003b�.
his provides more reliable uncertainty assessments in real studies.
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R28 Ulvmoen and Omre
Real seismic AVO data appear with more laterally correlated er-
ors, probably from the preprocessing, but we have chosen to gener-
te data with the likelihood model used in the inversion and hence ig-
ore lateral dependence in the error term. The logarithm of the elas-
ic material properties in m are approximated by a Gaussian random
eld parameterized by ��

*
,�

*
,c

*
�� �� as expectation vector, covari-

nce matrix, and spatial correlation function, respectively. The
ormer two are calculated from the reference elastic parameters us-
ng standard statistical estimators, with values

�*� �8.117,7.500,7.770�

nd

�*��0.0075 0.0080 0.0035

0.0080 0.0114 0.0030

0.0035 0.0030 0.0043
�,

orresponding to the logarithm of P-wave velocity, S-wave velocity,
nd density, respectively. We use a second-order exponential spatial
orrelation function c

*
�� � with range of 3 ms. The integral in the

ikelihood model is obtained as the average of the functional value in
000 samples specified for �mx,t �� x,t�.

In the implementation of the algorithm, 30 ms of shale are added
o the top and the bottom of the reservoir to avoid boundary effects.
s lateral boundary conditions, we assume that the left- and right-
ost profiles have the same neighbor profiles on both sides, and the

eighbor profiles are hence given double weights on the borders. We
nitiate the algorithm from four extreme configurations of � contain-
ng one class only and monitor the proportion of the LF classes after
ach sweep with one sweep corresponding to one update of each pro-
le in the field.
The sample paths are shown in Figure 5. All of the initial configu-

ations converge to very similar proportions after 2000 sweeps,
hich is defined to be the burn-in period. The mixing of the algo-

ithm, which characterizes the ability to cover the sample space of
he posterior model, can still be poor, however. The stable pattern of
he sample path for the range of 2000–20,000 sweeps and the good
patial coverage of seismic data, together with analytical deconvolu-
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igure 5. Convergence plot monitoring the proportion of LF classes
fter each sweep of simulation algorithm.
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ion in the simulation algorithm, make us believe that mixing is not a
ajor problem in the algorithm. The sample paths indicate that the

osterior model has one unique mode, which is not surprising, given
he large amount of seismic data with good spatial coverage. Con-
ergence will be even faster if a profilewise inversion is used as the
nitial state. The simulation algorithm is very fast, and it is well suit-
d for parallel implementation. Therefore, computer demands do not
ppear as a major problem for 2D inversion. In 3D problems, howev-
r, mixing may be slower.

RESULTS WITH DISCUSSION

The empirical study is based on a synthetic, manually designed
D reference reservoir. The well observations are obtained by copy-
ng the LF classes in the reference reservoir along the well traces.
he seismic AVO data are obtained by using the seismic likelihood
odel, which is later used in the inversion algorithm. The prior LF
odel is obtained independent of the reference reservoir and is de-

igned to capture major LF characteristics. The impact of using dif-
erent prior models is demonstrated in this study.

The uncertainty assessment only represents uncertainties in the
redicted LF characteristics given the observations under the known
xact model. Loss in predictability because of the approximation of
he posterior model is also captured. More realistic uncertainty as-
essment in studies of real reservoirs can be made by estimating the
odel parameters from the reservoir observations �see Buland and
mre, 2003b�. Conclusions from our study will help geoscientists
etermine the proper model formulation.

Our study focuses on the LF characteristics �. The complete solu-
ion is defined to be the approximate posterior model p̃�� �d�, from
hich realizations can be generated and the most probable combina-

ion of LF characteristics can be determined. The marginals
p�� x,t �d� are estimated by counting the number of occurrences of
ach LF class at each location over 3600 realizations taken every 20
weeps after burn-in. We calculate the locationwise most probable
olution from the expression

�̂x,t�arg max
�x,t

�p̃��x,t�d��; all �x,t��LD. �16�

Figure 6 contains three independent realizations of LF character-
stics generated from the approximate posterior model p̃�� �d�. Each
ealization can be considered as possible LF characteristics, and the
et of realizations represents the posterior uncertainty in the solu-
ion. The structure in the realizations is the same, and all of the real-
zations are realistic with respect to fluid segregation. The deviation
etween the realizations is small, indicating little posterior uncer-
ainty.

Figure 7 compares the predicted LF characteristics �̂ as the loca-
ionwise most probable solution and the reference LF characteristics
. Table 1 presents the associated classification matrix. In a perfect
rediction, �̂ would be identical to � and the classification matrix
ould contain zeroes in all entries except on the diagonal. The struc-

ure in the predicted solution and the reference case is mostly the
ame, but the reference LF characteristics are slightly more homoge-
eous than the locationwise most probable solution. On the other
and, the most probable solution is more homogeneous than the real-
zations caused by uncertainty in the model. The well observations
o not stand out, indicating that the inversion model is reliable in
ear-well areas and that the information contained in the wells is an
EG license or copyright; see Terms of Use at http://segdl.org/
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Bayesian LF inversion: Methodology R29
ntegral part of the inversion solution. The fluid segregation condi-
ion is fulfilled.

All of the diagonal elements in the classification matrix are the
argest, and the proportions of the LF classes are largely correct. The
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igure 6. Independent realizations of LF characteristics from ap-
roximate posterior p̃�� �d� for 2D Markov random-field model.
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roportions in the LF prediction are �0.17, 0.24, 0.36, 0.23�, com-
ared to the proportions in the reference reservoir of �0.18, 0.23,
.37, 0.22�. Recall that the approximate prior proportions in the prior
odel are �0.35, 0.18, 0.12, 0.35� and that the proportions in the well

bservations are �0.15, 0.19, 0.30, 0.36�. We interpret this adjust-
ent of proportions from the prior model to be caused by condition-

ng on the seismic AVO data, and the inversion is fairly robust to-
ard the choice of prior model. One main challenge of the study is to

able 1. Classification matrix for 2D Markov random-field
odel.

� \ �̂ SG SO SB SH �

SG 4605 365 42 13 5025

SO 94 6265 126 36 6521

SB 0 83 9798 639 10,520

SH 51 44 169 6070 6334

� 4750 6757 10,135 6758
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igure 7. �a� Locationwise most probable LF characteristics predic-
ion �̂ for 2D Markov random-field model; �b� reference LF charac-
eristics �.
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lassify thin layers of shale, and we see from the prediction that lay-
rs down to 1 ms are identified. This is caused by the spatial cou-
ling in the prior model, which increases the probability of identifi-
ation from modeling lateral continuity of shales. A few shale units
re missed and a few artificial shale units are added, but the heteroge-
eity is primarily correct.

Figure 8 compares profiles x:�21,50,79� of the marginal approxi-
ate posterior model p̃�� x,t �d� with the reference LF classes
arked on the respective axes. The former and latter profiles are to

he right and left of the two wells, respectively; profile x:�50� is in
he middle of the target zone. In a perfect classification, the probabil-
ties would be one in the positions of the reference LF classes and
ero otherwise. It is difficult to distinguish the near- and off-well
rofiles by visual inspection. Both profile types imply high probabil-
ty of classification to the true classes even for thin layers, and the
robability of correct classification increases with increasing layer
hickness. All shale layers are found with high probability — even
he ones that are very thin. The few misclassifications occur with re-
uced probability.

Figure 9 and Table 2 compare the predicted LF characteristics
rom three different prior models; the 2D Markov random-field prior
odel, the profilewise Markov-chain prior model, and the location-
ise prior model. In the profilewise Markov-chain prediction, the
ertical orderings are correct with respect to fluid segregation. The
ell observations are not integrated in the solution, and we observe a

kyline effect from lack of horizontal continuity. The diagonal ele-
ents in the classification matrix are not always the largest, and the

roportions of the LF classes deviate from the reference. The shale
ayers are often too thick, and thin sandstone layers between two lay-
rs of shale are filled with shale in many locations. The shale layers
re thinner, and the prediction is much more homogeneous in the 2D
arkov random field than in the profilewise Markov-chain model.
Much of the improvement in the 2D Markov random-field model

elative to the profilewise Markov-chain model is in classifying gas-
aturated sandstone, where spatial coupling in the prior model in-
reases the probability of identification. This is verified in the classi-
cation matrices. The locationwise prediction is very heteroge-
eous. However, it is possible to recognize the structure from the ref-
rence reservoir, particularly the shale layers. Even though the loca-
ionwise prior model is independent in each location, the likelihood

odel is calculated given the full dimension of the seismic data in-
luding deconvolution.

The prediction is better than one could expect from a traditional
patially independent model. The proportion of brine-saturated
andstone is overestimated, but gas-saturated sandstone is severely
nderestimated. There is little horizontal continuity, and the fluid
egregation condition is not fulfilled. The elements on the diagonal
f the classification matrix are often small compared to the off-
iagonal ones, and the proportions of the classes are incorrect. Thin
ayers of shale are often indicated in the prediction, but many artifi-
ial shale locations are added. The 2D Markov random-field predic-
ion is much more homogeneous than the locationwise prediction.

uch of the gain in the 2D Markov random-field model is in classifi-
ation of gas- and oil-saturated sandstone and in classification of thin
hale layers.

Figure 10 compares the marginal approximate posterior model
p�� x,t �d� in profile x:�50� for the three prior models. The probabili-
ies in the profilewise Markov-chain model are smoothed between
he layers, making the transitions indistinct. Most of the uncertainty
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igure 8. Marginal approximate posterior p̃�� x,t �d� for 2D Markov
andom-field model in profiles x:�21,50,79� in �a�, �b�, and �c�, re-
pectively. The reference LF profile � is marked on each axis.
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Bayesian LF inversion: Methodology R31
ppears in these interfaces. The probabilities in the 2D Markov ran-
om-field model are closer to zero or one, and the probabilities are
harpened in the interfaces between the layers. The shale layers are
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igure 9. Locationwise most probable LF characteristics predictions
ˆ for �a� 2D Markov random-field model, �b� profilewise Markov-
hain model, and �c� locationwise model.
Downloaded 18 May 2010 to 156.116.8.60. Redistribution subject to S
hinner as a result of these sharpenings. The locationwise model has
onsiderable fluctuation in the probabilities. Some probability of the
orrect LF class is often visible, indicating that the seismic data do
ontain some information regarding the LF classes. Most of the fluc-
uations are removed in the 2D Markov random-field model com-
ared to the locationwise model.

Figure 11 and Table 3 compare the predicted and reference LF
haracteristics from the inversion method based on the reference
eismic signal without observation error. By visual inspection, the
wo are almost identical. The artificial layers of shale from the pre-
iction with observation error are removed, and the shale layers have
lmost correct thickness. The numbers on the diagonal of the classi-
cation matrix are much larger than the off-diagonal ones, and the
roportions of the LF classes are almost correct. The results indicate
hat the inversion method is very reliable and that the main problem
s the noise in the observations.

Figure 12 compares the predicted LF characteristics based on dif-
erent types of information. Recall that a prediction based on the pri-
r profile Markov random-field model p��� conditioned on neither
eismic nor well information is complicated because of the local na-
ure of the prior model. The prediction based on well observations
nly, i.e., on the model p�� �dw�, is displayed in Figure 12. The ob-
ervations in the well trace are exactly reproduced, and they have
arge influence in the well-trace neighborhood. Farther away from
he well trace, the prediction is mostly defined by the prior model and
ence is very uncertain. The prediction based on seismic data only,
.e., on the model p�� �ds�, is also displayed in Figure 12. By com-
aring this prediction to the reference LF characteristics, one ob-

able 2. Classification matrix for 2D Markov random-field
odel, profilewise Markov-chain model, and locationwise
odel.

� \ �̂ SG SO SB SH �

SG 4605 365 42 13 5025
SO 94 6265 126 36 6521
SB 0 83 9798 639 10,520
SH 51 44 169 6070 6334

� 4750 6757 10,135 6758

� \ �̂ SG SO SB SH �

SG 1069 3759 115 82 5025
SO 111 4382 1904 124 6521
SB 0 575 7500 2445 10520
SH 34 193 767 5340 6334

� 1214 8909 10,286 7991

� \ �̂ SG SO SB SH �

SG 921 2815 1258 31 5025
SO 217 2506 3594 204 6521
SB 3 300 6822 3395 10,520
SH 0 44 609 5681 6334

� 1141 5665 12,283 9311
EG license or copyright; see Terms of Use at http://segdl.org/
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erves that the prediction is fairly reliable. Even thin shale units ap-
ear to be reproduced.

Thus, from the results, it is clear that the seismic data, not the well
bservations, provide the detailed structure in the solution. The well
bservations have impact only in the neighborhood of the well loca-
ions and by defining some fluid contacts.

able 3. Classification matrix for inversion based on
eference seismic signal s without observation error for 2D

arkov random-field model.

� \ �̂ SG SO SB SH �

SG 4702 318 0 5 5025
SO 0 6418 84 19 6521
SB 0 59 9950 511 10,520
SH 46 59 37 6192 6334

� 4748 6854 10,071 6727

T
im

e
(m

s)
Common midpoint

10 20 30 40 50 60 70 80 90 100

2050

2100

2150

2200

2250
SG

SO

SB

SH

a)

T
im

e
(m

s)

Common midpoint
10 20 30 40 50 60 70 80 90 100

2050

2100

2150

2200

2250
SG

SO

SB

SH

b)

igure 11. Results from case without observation error, i.e., inver-
ion based on reference seismic signal s. �a� Locationwise most
robable LF characteristics prediction �̂ for 2D Markov random-
eld model; �b� reference LF characteristics �.
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igure 10. Marginal approximate posterior p̃�� x,t �d� in profile
:�50� for �a� 2D Markov random-field model, �b� profilewise Mark-
v-chain model, and �c� locationwise model. The reference LF pro-
le � is marked on each axis.
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Bayesian LF inversion: Methodology R33
CONCLUSIONS

We have developed an efficient LF inversion approach from
restack seismic data and well observations for 3D reservoirs. The
nversion is defined in a Bayesian framework where the prior model
or the LF classes is defined as a profile Markov random field with
he vertical profiles following Markov-chain models upward
hrough the reservoir. The likelihood model is defined by a seismic
orward model and rock-physics relations, and it is approximated to
llow partial analytical treatment. The resulting posterior model is
xplored using an efficient block Gibbs simulation algorithm.

The inversion approach has been evaluated empirically on a 2D
anually designed synthetic reservoir. The associated synthetic well

bservations and seismicAVO data are obtained by using the associ-
ted likelihood models, which are later used in the inversion. The
rior LF models are obtained independent of the reference reservoir.
ence, the uncertainty assessments are made under a given exact
odel but also capturing uncertainty resulting from the approxima-
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igure 12. Locationwise most probable LF characteristics predic-
ion �̂ for 2D Markov random-field model from �a� inversion based
n well observations only and �b� inversion without well observa-
ions.
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ion of the posterior model. In real studies, more representative un-
ertainty assessments can be obtained by estimating the model pa-
ameters from the available observations and training images.

The impact of using different prior LF models has been studied.
e have compared the results from the fully coupled 2D Markov

andom-field model with results from profilewise and locationwise
odels. The 2D model combines seismic data and well observa-

ions, and the latter is given lateral influence beyond the well loca-
ions. The fully coupled 2D model provides more reliable results
han the profilewise and locationwise models, and it provides reli-
ble classifications even with an S/N of two. The proportions of the
F classes are precisely reproduced even with a prior model with bi-
sed prior proportions. LF units ranging 1–3 ms thick are identified
y lateral continuity, and this is far below what is normally consid-
red to be the seismic resolution in profilewise interpretation. The
pproximation in the likelihood model appears very reliable because
he inversion is almost correct in the no-noise case. Hence, the obser-
ation error is the major source of uncertainty.

Frequently, LF inversion is referred to as an ill-posed inverse
roblem because of the lack of one unique solution. Our opinion,
owever, is that it is not severely ill posed. Seismic AVO data are
bundant and LF classification is robust because of discretization.
y introducing local neighboring rules through the prior profile
arkov random field, we obtain very stable inversion results. More-

ver, the results appear as robust with respect to deviations in the pri-
r model as a result of abundance of seismicAVO data.

The 3D simulation algorithm is very efficient because it is based
n an analytical solution vertically, and Markov-chain Monte-Carlo
imulation is needed only in two dimensions laterally. Hence, the al-
orithm is feasible to perform in three dimensions.

The LF inversion approach can be further extended by including
ifferent continuity directions for lithologies and fluids, and vertical
rends in the LF proportions. Simulation-based estimation of model
arameters is also possible as a result of efficiencies in the simula-
ion algorithm.

The inversion approach is evaluated on a 2D cross section of a real
eservoir in Part II of this paper.
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APPENDIX A

MARKOV RANDOM FIELD

The profile Markov random field is defined by

p��x���x��p��x��y;y�� �x��; all x�LD
x , �A-1�

here the profiles follow nonhomogeneous Markov-chain models
iven by

p��x��y;y�� �x����
t

p��x,t��x,t�1,�y,t;y�� �x��; all x�LD
x . �A-2�

sing this prior model formulation, we want to show

p��x,t����x,t���p��x,t��x,t�1,�x,t�1,�y,t;y�� �x��; all �x,t��LD. �A-3�
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roof:

p��x,t����x,t��

�p��x,t��x,�t,�y;y�� �x���
p��x,t,�x,�t��y�

��x,t

p��x,t,�x,�t��y�
�

p��x��y�

��x,t

p��x��y�

�
p��x,T��y,T�� ¯ � p��x,t��x,t�1,�y,t�� ¯ � p��x,1��x,2,�y,1�

��x,t

p��x,T��y,T�� ¯ � p��x,t��x,t�1,�y,t�� ¯ � p��x,1��x,2,�y,1�

�
p��x,t�1��y,t�1�
p��x,t�1��y,t�1�

�
p��x,t��x,t�1,�y,t�p��x,t�1��x,t,�y,t�1�

��x,t

p��x,t��x,t�1,�y,t�p��x,t�1��x,t,�y,t�1�

�
p��x,t�1,�x,t,�x,t�1��y,t�1,�y,t,�y,t�1�

��x,t

p��x,t�1,�x,t,�x,t�1��y,t�1,�y,t,�y,t�1�

�p��x,t��x,t�1,�x,t�1,�y,t�1,�y,t,�y,t�1�

�p��x,t��x,t�1,�x,t�1,�y,t;y�� �x�� . �A-4�

APPENDIX B

SIMULATION ALGORITHM

nitiate

Generate arbitrary �0

terate i�1,2,3,. . .

nitiate

� i�� i�1

o

x in random sequence through LD
x

pward recursion

nitiate

pu�� x,T�� �const� l�dx
s �� x,T�p�� x,T �� y,T

i �; x��K
const� p�dx,T

w �� x,T�l�dx
s �� x,T�p�� x,T �� y,T

i �; x�K �
const� ���x,T

pu�� x,T���1

terate t�T�1,T�2,¯,1

pu�� x,t�1,� x,t�� �const� l�dx
s �� x,t�p�� x,t �� x,t�1,� y,t

i �pu�� x,t�1�; x��K
const� p�dx,t

w �� x,t�l�dx
s �� x,t�p�� x,t �� x,t�1,� y,t

i �pu�� x,t�1�; x�K �
const� ���x,t�1

��x,t
pu�� x,t�1,� x,t���1

pu�� x,t����x,t�1
pu�� x,t�1,� x,t�

nd iterate t

ownward simulation

nitiate

Generate realization � x,1
c from pu�� x,1�

terate t�2. . . ,T

Generate realization � x,t
c from

pu�� x,t �� x,t�1
c ��pu�� x,t,� x,t�1

c � / pu�� x,t�1
c �

nd iterate t

Update

�x
i ��x

c

nd iterate x

nd iterate i
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In each iteration i, �i is generated from p̃i�� �d� with limiting dis-
ribution

lim
i→	

p̃i���d�� p̃���d�, �B-1�

hich is the distribution of interest. One sweep of the algorithm in-
ludes Nx�L� �T�1�L2� operations, with L being the number of LF
lasses and with T and Nx being the number of vertical and horizontal
rid nodes. Hence, it is quadratic in the size of sample space of � x,t

nd linear in the number of grid nodes in LD.

APPENDIX C

TRANSITION MATRICES IN EMPIRICAL STUDY

Transition matrices with limiting distributions in 2D Markov
andom-field model in the synthetic empirical study:

PSG,SG
t ��

0.9998 0 0 0.0002

0.9996 0.0002 0 0.0002

0.9994 0.0002 0.0002 0.0002

0.9994 0.0002 0.0002 0.0002
�

pSG,SG� �0.9997 0.0000 0.0000 0.0003�

PSG,SO
t ��

0.9995 0 0 0.0005

0.4999 0.4999 0 0.0002

0.4998 0.4998 0.0002 0.0002

0.4998 0.4998 0.0002 0.0002
�

pSG,SO� �0.9990 0.0005 0.0000 0.0005�

PSG,SB
t ��

0.9995 0 0 0.0005

0.9990 0.0005 0 0.0005

0.4998 0.0002 0.4998 0.0002

0.4998 0.0002 0.4998 0.0002
�

pSG,SB� �0.9990 0.0000 0.0005 0.0005�

PSG,SH
t ��

0.5000 0 0 0.5000

0.4999 0.0002 0 0.4999

0.4998 0.0002 0.0002 0.4998

0.4998 0.0002 0.0002 0.4998
�

pSG,SH� �0.4999 0.0001 0.0001 0.4999�

PSO,SO
t ��

0.5000 0 0 0.5000

0.0002 0.9996 0 0.0002

0.0002 0.9994 0.0002 0.0002

0.0002 0.9994 0.0002 0.0002
�
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pSO,SO� �0.0005 0.9990 0.0000 0.0005�

PSO,SB
t ��

0.5000 0 0 0.5000

0.0005 0.9990 0 0.0005

0.0002 0.4998 0.4998 0.0002

0.0002 0.4998 0.4998 0.0002
�

pSO,SB� �0.0010 0.9970 0.0010 0.0010�

PSO,SH
t ��

0.0005 0 0 0.9995

0.0002 0.4999 0 0.4999

0.0002 0.4998 0.0002 0.4998

0.0002 0.4998 0.0002 0.4998
�

pSO,SH� �0.0002 0.4997 0.0001 0.4999�

PSB,SB
t ��

0.5000 0 0 0.5000

0.3333 0.3333 0 0.3333

0.0002 0.0002 0.9994 0.0002

0.0002 0.0002 0.9994 0.0002
�

pSB,SB� �0.0007 0.0004 0.9981 0.0007�

PSB,SH
t ��

0.0005 0 0 0.9995

0.0005 0.0005 0 0.9990

0.0002 0.0002 0.4998 0.4998

0.0002 0.0002 0.4998 0.4998
�

pSB,SH� �0.0002 0.0002 0.4995 0.5000�

PSH,SH
t ��

0.0002 0 0 0.9998

0.0002 0.0002 0 0.9996

0.0002 0.0002 0.0002 0.9994

0.0002 0.0002 0.0002 0.9994
�

pSH,SH� �0.0002 0.0002 0.0002 0.9993�

ith the term P�·,·�
t corresponding to the transition matrix with lateral

eighbors �·,·� and p�·,·� the corresponding limiting distribution.
The average of the transition matrices is

P��
0.5000 0 0 0.5000

0.3333 0.3333 0 0.3333

0.2500 0.2500 0.2500 0.2500

0.2500 0.2500 0.2500 0.2500
�

ith associated limiting distribution

Downloaded 18 May 2010 to 156.116.8.60. Redistribution subject to S
p� �0.3529 0.1765 0.1176 0.3529� .

ransition matrix in profilewise Markov-chain model is

P��
0.9001 0 0 0.0999

0.0531 0.8913 0 0.0557

0.0030 0.0560 0.9065 0.0345

0.0129 0.0097 0.0787 0.8987
�

ith limiting distribution

p� �0.1544 0.1870 0.3010 0.3576� .
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